Skip Nav Destination
Close Modal
By
Alton T. Tabereaux
By
G.T. Murray, T.A. Lograsso
By
Vladimir Duz, Andrey Klevtsov, Viktor Sukhoplyuyev
By
Thomas W. Pelletiers, II, Wayne K. Daye
By
Mary Oakley, Wayne Chandler
By
Michael L. Marucci, James A. Catanese
By
Chris Schade
Search Results for
electrolytic processes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 797
Search Results for electrolytic processes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Production of Primary Aluminum by Electrolysis
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006483
EISBN: 978-1-62708-207-5
... Abstract This article describes the Bayer process for the purification of alumina. The process includes four major stages: digestion, clarification, precipitation, and calcination. The article discusses the aluminum electrolytic process in terms of aluminum electrolysis cell design...
Abstract
This article describes the Bayer process for the purification of alumina. The process includes four major stages: digestion, clarification, precipitation, and calcination. The article discusses the aluminum electrolytic process in terms of aluminum electrolysis cell design, magnetohydrodynamic forces, and cathode lining. It reviews the electrochemical reactions and thermodynamics for aluminum electrolysis standard Gibbs. The article also describes the cell operations and cell stability, as well as the key indicators of cell performance. It schematically illustrates the typical costs producing aluminum in an aluminum smelter. The article also discusses various environmental issues, such as fluoride recovery; perfluorocarbons, polycyclic aromatic hydrocarbons, and sulfur emissions; spent pot lining; and development of inert anodes and CO2 emissions.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001017
EISBN: 978-1-62708-161-0
... coatings can be applied to wire by various methods, including hot dip processes, electrolytic process, and metal cladding by rolling metallic strip over the wire. These wires are normally grouped into broad usage categories. These categories, as well as some items in each category, are described...
Abstract
This article begins with an overview of steel wire configurations and sizes followed by a discussion on various wiremaking practices. The wiredrawing operation is discussed, including cleaning, die design, use of lubricants and welds, finishes, coating, and thermal treatments. Metallic coatings can be applied to wire by various methods, including hot dip processes, electrolytic process, and metal cladding by rolling metallic strip over the wire. These wires are normally grouped into broad usage categories. These categories, as well as some items in each category, are described in the article under their quality descriptions or commodity names. These include low-carbon steel wire for general usage, wire for structural applications, wire for packaging and container applications, wire for prestressed concrete, wire for electrical or conductor applications, rope wire, mechanical spring wire for general use, wire for fasteners, mechanical spring wire for special applications, upholstery spring construction wire, and alloy wire.
Book Chapter
Preparation and Characterization of Pure Metals
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio...
Abstract
The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio test methods used to characterize purity. Tables list the values for resistance ratios of zone-refined metals and their corresponding chemical compositions, and provide an example of the detection of impurities to concentrations in the parts per billion range, utilizing a combination of the glow discharge mass spectroscopy method and Leco combustion methods.
Image
Published: 01 January 1989
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002163
EISBN: 978-1-62708-188-7
... supplies, electrolyte system, part holding fixtures, cathode holders, and cathode tubes. Key process parameters for electrostream and capillary drilling are also discussed. capillary drilling cathode holders cathode tubes electrolyte system electrostream power supplies tooling...
Abstract
This article describes the applications, process capabilities, and limitations and advantages of electrostream and capillary drilling. It describes equipment and tooling used for electrostream and capillary drilling. These include electrostream and capillary drilling machines, power supplies, electrolyte system, part holding fixtures, cathode holders, and cathode tubes. Key process parameters for electrostream and capillary drilling are also discussed.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002164
EISBN: 978-1-62708-188-7
... Abstract Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process...
Abstract
Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process, including turbine blade cooling holes, turbine vane cooling holes, turbine disk cooling passages, oil passages, and fuel nozzles. It describes the limitations and advantages of the STEM process. The article discusses the various tool parts of the STEM system, including the holding fixture, guide for cathodes, cathodes, and cathode holder/manifold. The article concludes with information on the process parameters of the STEM system.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003595
EISBN: 978-1-62708-182-5
... Abstract Electropolishing is an electrochemical process that involves anodic dissolution of a metal specimen (anode electrode) in an electrolytic cell. This article reviews the two-electrode and three-electrode systems for electropolishing. It presents the equations of anodic reactions...
Abstract
Electropolishing is an electrochemical process that involves anodic dissolution of a metal specimen (anode electrode) in an electrolytic cell. This article reviews the two-electrode and three-electrode systems for electropolishing. It presents the equations of anodic reactions and the selection criteria of electrolyte for electropolishing. The article also describes the mechanism of electropolishing and the effect of electropolishing on properties of metals.
Book Chapter
Production of Titanium Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006078
EISBN: 978-1-62708-175-7
... established. Current existing commercial processes include chemical reduction, electrolytic reduction, hydride/dehydride, gas atomization, plasma-rotating electrode, and mechanical alloying. These processes are described in detail by J.H. Moll and C.F. Yolton of the Crucible Research Center...
Abstract
This article provides a summary of the conventional technologies used for titanium powder production. It focuses on the various processes for titanium powder production, namely, Hunter, Kroll, Armstrong, MER, TIRO, FFC-Cambridge, Chinuka, and CSIR processes. Employment of titanium powder significantly improves the synthesis of titanium and its alloys.
Book Chapter
Production of Copper and Copper Alloy Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006139
EISBN: 978-1-62708-175-7
... atomization THE SELF-LUBRICATING BRONZE BEARING was invented in the 1920s. This achievement brought about the commercial production of copper powders. The first large-scale production processes were oxide reduction and electrolytic deposition. Electrolytic copper powders enabled the development of copper...
Abstract
This article describes the fundamentals of various techniques used for the production of copper and copper alloy powders. These include atomization (water, air, and gas), oxide reduction, and electrolysis. The article discusses the effects of electrolyte composition and operating conditions on the characteristics of copper and copper alloy powders.
Book Chapter
Chemical and Electrolytic Brightening
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006511
EISBN: 978-1-62708-207-5
... Abstract Chemical brightening (bright dipping) and electrolytic brightening (electropolishing) are essentially selective-dissolution processes, in which the high points of a rough surface of aluminum are attacked more rapidly than the depressions, and the peaks and valleys are smoothed...
Abstract
Chemical brightening (bright dipping) and electrolytic brightening (electropolishing) are essentially selective-dissolution processes, in which the high points of a rough surface of aluminum are attacked more rapidly than the depressions, and the peaks and valleys are smoothed to produce a bright and beautiful finish. This article discusses the metallurgical factors, optical factors, and applications of the chemical and electrolytic brightening. It compares the chemical brightening and electrolytic brightening, and presents the advantages of the chemical and electrolytic brightening processes in terms of performance and economy. The article describes the phosphoric-nitric acid baths and phosphoric-sulfuric acid baths used for chemical brightening. Solution compositions and operating conditions for three commercial electropolishing processes, as well as for suitable post-treatments, are presented in a table.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001744
EISBN: 978-1-62708-178-8
... of reaction as a function of potential for the reversible reduction of a metal ion species to another soluble species. E is the control potential required for 99.9% conversion of M(m) to M(m−n). In reversible electrolytic processes, the electrolysis can be reversed by appropriate adjustment...
Abstract
Controlled-potential coulometry is a highly precise and accurate method primarily used for major constituent analysis of analyte substances such as alloys, compounds, nonmetallic materials and organic compounds. This article illustrates the apparatus required for controlled-potential coulometry, and provides information on its techniques and applications. It contains a table that lists the metals for which accurate methods have been developed and the basic electrochemistry of the procedures. The article explains that gold and uranium are the elements that are determined frequently in various sample types.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003599
EISBN: 978-1-62708-182-5
... with a warm, low-impurity electrolyte with a high concentration of metal ions. Careful process control of the supply of leveling and grain-refining agents, current density, and temperature is essential. Electrochemical Cell Both electrodes are immersed in suitable electrolytic solutions. The anode...
Abstract
Electrochemical refining is the purification process for producing commercially pure metals from crude metals. This article describes the principles of electrochemical reactions. It discusses the physical properties of the basic components of electrochemical refining cell. The article also explains the engineering considerations required in the refining process. Theoretical and technological principles of electrochemical refining are illustrated, with examples.
Book Chapter
Production of Powder Metallurgy Carbon and Low-Alloy Steels
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... coatings, tapes, radar-absorbing materials Food enrichment and animal feed Electrolytic Iron Powder Introduction to Electrolytic Iron Powder Iron powder made via the electrolytic deposition process has the highest level of purity among all types of commercially available iron powders...
Abstract
This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003022
EISBN: 978-1-62708-200-6
... and metallizing are both used in the literature to refer to the application of a metallic coating to a plastic surface. In this article, metallizing is used to refer to the general case, and plating is reserved for electroless and electrolytic processes. History of Metallizing of Plastics...
Abstract
The process of coating plastics with metals for functional purposes is called metallizing of plastics. This article discusses the metallizing of plastics, provides information on its history, and gives a short note on applications and adhesion properties of metallic coatings. It also discusses the selection of plastics for plating. This article also describes metallizing techniques, including plating (electrolytic or electroplating), vacuum metallizing and thermal spraying, and environmental considerations. The article discusses the quality assurance procedures for metallized plastic parts which include tests that assess the quality of the finish, coating thickness, adhesion, and corrosion resistance, and gives a short note on service performance, which includes service condition classifications.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003597
EISBN: 978-1-62708-182-5
... (or bit) should overlap the area to be deburred by about 1.5 to 2.0 mm (0.06 to 0.08 in.). Electrochemical deburring is useful for burrs located in inaccessible areas where other deburring processes are not effective ( Ref 5 , 6 ). In ECD, the magnitude of current and electrolyte flow rate are lower than...
Abstract
Specific machining processes that employ electrochemical machining technology include deburring and deep-hole drilling. This article describes the principle and applications of electrochemical deburring as well as the machine tools used in the process. The system, process capabilities, and applications of electrochemical deep-hole drilling are also discussed. The article also reviews the pulse electrochemical machining.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003598
EISBN: 978-1-62708-182-5
... in water and electrically nonconductive. Removal of the nonreactive oxide layer by protruding abrasive particles helps in electrolytic dissolution, exposing fresh metal for further electrolytic action. Hence, this process is also called mechanical assisted electrochemical grinding ( Ref 3 ). In zone...
Abstract
This article provides a discussion on a working principle, the operations, characteristics, capabilities, and applications of electrochemical grinding (ECG). The basic elements of the ECG machine tool are also presented.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
... process that occurs when a metallic workpiece passes an electrical current in the presence of an electrolyte. This electrochemical action is responsible for most (90%) of the material removal, but the grinding action of the cathode wheel removes the buildup of oxide film on the surface of the workpiece...
Abstract
This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel, and the workpiece. Grinding, surface grinding, internal grinding, form grinding, and cylindrical grinding are discussed. The article also lists the advantages, disadvantages, and applications of ECG.
Book Chapter
Chemical and Electrolytic Methods of Powder Production
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
... to produce powders electrolytically and describes the types of metal powders made and their physical and chemical characteristics. Detailed information on the processing variables that permit close control of the chemical and physical properties of electrolytic powders can be found in the articles...
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003169
EISBN: 978-1-62708-199-3
... of pyrometallurgical unit processes. The purity of the metal product also depends on the chosen route. Electrolytic refining as the final step in extraction yields a product of higher purity. Pyrometallurgical processes generally yield a product with impurities unless the product is further refined. For complete...
Abstract
Ores, which consist of the primary valuable mineral, predominant gangue content, valuable by-products, and detrimental impurities, are extracted and directed to mineral processing. This article describes the mineral processing facilities, such as crushers, grinders, concentrators, separators, and flotation devices that are used for particle size reduction, separation of particles according to their settling rates in fluids and dewatering of concentrate particles. It explains the basic principles, flow diagrams, ore concentrate preparation methods, and equipment of major types of metallurgical processes, including pyrometallurgical, hydrometallurgical, and electrometallurgical processes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003596
EISBN: 978-1-62708-182-5
... on the applications of ECM. electrochemical machining power source electrolyte cleaning supply system tool-feed system workpiece-holding system electrolyte tool design process control SALT SOLUTIONS (ELECTROLYTES)— unlike metallic conduction where only electrons are the charge carriers—conduct...
Abstract
This article discusses four subsystems of the electrochemical machining (ECM) system: power source, electrolyte cleaning and supply system, tool and tool-feed system, and workpiece and workpiece-holding system. It describes the theory of ECM and provides information on the electrolytes used in ECM. The article reviews the methods associated with workpiece shape prediction. The procedures and integrated approach for the tool design in ECM are discussed. The article also explains the process control, capabilities, and the limitations of ECM. It concludes with information on the applications of ECM.
1