Skip Nav Destination
Close Modal
By
Chris Schade
By
Chris Schade
By
Mohammed Maniruzzaman, Xiaolan Wang, Richard D. Sisson, Jr.
By
Curtiss Dunbar
By
G.T. Murray, T.A. Lograsso
By
K.P. Rajurkar, Jerzy Kozak, Arindam Chatterjee
By
Michael L. Marucci, James A. Catanese
Search Results for
electrolytic methods
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 724
Search Results for electrolytic methods
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Chemical and Electrolytic Methods of Powder Production
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
... such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders...
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Image
Titanium powder samples obtained by electrolytic reduction methods for tita...
Available to PurchasePublished: 30 September 2015
Fig. 7 Titanium powder samples obtained by electrolytic reduction methods for titanium extraction from its ores. (a) A sample of crystalline morphology of “electrowon” titanium particulates. Courtesy of MER Corporation. (b) Scanning electron micrograph image of unalloyed titanium powder
More
Book Chapter
Introduction to Metal Powder Production and Characterization
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006086
EISBN: 978-1-62708-175-7
... on required production rates, powder properties, and the physical and chemical properties of the material. Chemical and electrolytic methods are useful for producing high-purity powders. Mechanical comminution (or milling) is the most widely used method of powder production for hardmetals and oxides...
Abstract
Various powder production processes allow precise control of the chemical composition and physical characteristics of powders and allow tailoring of specific attributes for targeted applications. Metal powders are produced by either mechanical methods or chemical methods. The commonly used mechanical methods include water and gas atomization, milling, mechanical alloying, and electrolysis. Some chemical methods include reduction of oxides. This article provides information on the reliable techniques for powder characterization and testing to evaluate the chemical and physical properties of metal powders, both as individual particles and in bulk forms.
Book Chapter
Chemical and Electrolytic Polishing
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003748
EISBN: 978-1-62708-177-1
... Abstract Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article...
Abstract
Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article discusses the mechanism, operating procedure, advantages, and limitations of chemical and electrolytic polishing of samples for metallographic preparation. It provides information on the specimen preparation, apparatus used, and safety precautions to be followed during the polishing process. The various groups of electrolytes used in electropolishing of several metals and alloys are reviewed. The article concludes with a discussion on local electropolishing.
Book Chapter
Cleaning of Steel for Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005777
EISBN: 978-1-62708-165-8
... are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards...
Abstract
This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely, mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards that may be associated with each cleaning method and the general control measures to be used for each hazard are tabulated.
Book Chapter
Surface Preparation for Continuously Applied Coatings
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001269
EISBN: 978-1-62708-170-2
... Abstract This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace...
Abstract
This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004115
EISBN: 978-1-62708-184-9
... Abstract Stray current can be defined as a current in structures that are underground or immersed in an electrolyte that most often accelerate corrosion on a structure where a positive current leaves the structure to enter the earth or an electrolyte. This article provides a description...
Abstract
Stray current can be defined as a current in structures that are underground or immersed in an electrolyte that most often accelerate corrosion on a structure where a positive current leaves the structure to enter the earth or an electrolyte. This article provides a description of the principles of stray current and a discussion on the major types of stray current and their properties and prediction methods. It discusses the consequences of stray current and describes the interference tests used for mapping the path of the stray currents. The article also highlights the methods of mitigating the source of stray current.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
... Abstract This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel...
Abstract
This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel, and the workpiece. Grinding, surface grinding, internal grinding, form grinding, and cylindrical grinding are discussed. The article also lists the advantages, disadvantages, and applications of ECG.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003596
EISBN: 978-1-62708-182-5
... of y e , r c , and b b . Such methods have proved useful in planning an ECM operation. However, the empirical and nomographic methods cannot be generalized and are valid only for the specified machining conditions, tool and work material combination, and type of electrolyte. More complicated...
Abstract
This article discusses four subsystems of the electrochemical machining (ECM) system: power source, electrolyte cleaning and supply system, tool and tool-feed system, and workpiece and workpiece-holding system. It describes the theory of ECM and provides information on the electrolytes used in ECM. The article reviews the methods associated with workpiece shape prediction. The procedures and integrated approach for the tool design in ECM are discussed. The article also explains the process control, capabilities, and the limitations of ECM. It concludes with information on the applications of ECM.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001742
EISBN: 978-1-62708-178-8
... Abstract Electrogravimetry is the oldest electroanalytical technique in which the element of interest is deposited electrolytically onto an electrode and weighed. This article discusses the principles involved in determining the electrolysis rate of the solution, and describes different methods...
Abstract
Electrogravimetry is the oldest electroanalytical technique in which the element of interest is deposited electrolytically onto an electrode and weighed. This article discusses the principles involved in determining the electrolysis rate of the solution, and describes different methods for the separation of ion in the electrolyte and their corresponding instrumentation. Furthermore, it explores the various types of analysis, such as the separation and quantitative determination of metal ions and internal electrolysis, and provides a detailed account of the applications of electrogravimetry with examples.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006102
EISBN: 978-1-62708-175-7
... Particles Commercial iron powders are generally manufactured using either mechanical or chemical methods. Water atomization of molten iron or alloys is a primary mechanical manufacturing method today. Chemical methods include reduction and electrolytic and carbonyl processes, with chemical reduction...
Abstract
Particle image analysis of metal powders can be easily performed with optical macroscopes and microscopes. This article provides examples of the particle image analysis on powders used in the powder metallurgy industry.
Book Chapter
Preparation and Characterization of Pure Metals
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio...
Abstract
The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio test methods used to characterize purity. Tables list the values for resistance ratios of zone-refined metals and their corresponding chemical compositions, and provide an example of the detection of impurities to concentrations in the parts per billion range, utilizing a combination of the glow discharge mass spectroscopy method and Leco combustion methods.
Book Chapter
Surface Engineering of Aluminum and Aluminum Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
... Abstract Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing...
Abstract
Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing, and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating, electroless plating, porcelain enameling, and shot peening.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006512
EISBN: 978-1-62708-207-5
... Abstract This article describes the methods used for coloring anodized aluminum coatings: integral coloring, electrolytic coloring, chemical coloring, and organic dyeing. It discusses organic dye chemistry in terms of single-component organic dyes and multicomponent dyes. The article reviews...
Abstract
This article describes the methods used for coloring anodized aluminum coatings: integral coloring, electrolytic coloring, chemical coloring, and organic dyeing. It discusses organic dye chemistry in terms of single-component organic dyes and multicomponent dyes. The article reviews optimal dyeing conditions, such as temperature, time, concentration, and pH. It concludes with a discussion on the factors considered for choosing a coloring method: the desired shade, light fastness, heat fastness, and contamination.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005772
EISBN: 978-1-62708-165-8
... involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt...
Abstract
Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes.
Book Chapter
Nonabrasive Finishing Methods
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001233
EISBN: 978-1-62708-170-2
... away is thought to influence conductivity. Pressure control is the method of controlling flow rate (especially when a centrifugal pump is used). The flow rate also affects the level of turbulence of the electrolyte as it passes through the gap, and this influences the surface finish. The flow rate must...
Abstract
Nontraditional finishing processes include electrochemical machining (ECM), electrodischarge machining (EDM), and laser beam machining. These processes belong to nonabrasive finishing methods where surface generation occurs with an insignificant amount of mechanical interaction between the processing tool and the workpiece surfaces. This article provides information on the equipment used, applications, process capabilities, and limitations of ECM and EDM.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003597
EISBN: 978-1-62708-182-5
... quality ( Ref 1 ). These last two factors are important aspects for the performance and life of a product, however. When a component is processed by a conventional machining method, it is usually left with burrs along intersecting surfaces. Such burrs are unwanted and could be a hazard when handling...
Abstract
Specific machining processes that employ electrochemical machining technology include deburring and deep-hole drilling. This article describes the principle and applications of electrochemical deburring as well as the machine tools used in the process. The system, process capabilities, and applications of electrochemical deep-hole drilling are also discussed. The article also reviews the pulse electrochemical machining.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003663
EISBN: 978-1-62708-182-5
..., and laboratory testing methods of evaluating galvanic corrosion. The laboratory tests fall into two categories, namely, electrochemical tests and specimen exposures. component testing computer scale modeling electrochemical testing galvanic corrosion laboratory testing method physical scale modeling...
Abstract
Galvanic corrosion, although listed as one of the forms of corrosion, is considered as a type of corrosion mechanism that is evaluated by modifying the tests used for conventional forms of corrosion. This article focuses on component testing, computer and physical scale modeling, and laboratory testing methods of evaluating galvanic corrosion. The laboratory tests fall into two categories, namely, electrochemical tests and specimen exposures.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001017
EISBN: 978-1-62708-161-0
... coatings can be applied to wire by various methods, including hot dip processes, electrolytic process, and metal cladding by rolling metallic strip over the wire. These wires are normally grouped into broad usage categories. These categories, as well as some items in each category, are described...
Abstract
This article begins with an overview of steel wire configurations and sizes followed by a discussion on various wiremaking practices. The wiredrawing operation is discussed, including cleaning, die design, use of lubricants and welds, finishes, coating, and thermal treatments. Metallic coatings can be applied to wire by various methods, including hot dip processes, electrolytic process, and metal cladding by rolling metallic strip over the wire. These wires are normally grouped into broad usage categories. These categories, as well as some items in each category, are described in the article under their quality descriptions or commodity names. These include low-carbon steel wire for general usage, wire for structural applications, wire for packaging and container applications, wire for prestressed concrete, wire for electrical or conductor applications, rope wire, mechanical spring wire for general use, wire for fasteners, mechanical spring wire for special applications, upholstery spring construction wire, and alloy wire.
Book Chapter
Production of Powder Metallurgy Carbon and Low-Alloy Steels
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... Abstract This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most...
Abstract
This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes.
1