Skip Nav Destination
Close Modal
Search Results for
electrolytic brightening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 70 Search Results for
electrolytic brightening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006511
EISBN: 978-1-62708-207-5
... Abstract Chemical brightening (bright dipping) and electrolytic brightening (electropolishing) are essentially selective-dissolution processes, in which the high points of a rough surface of aluminum are attacked more rapidly than the depressions, and the peaks and valleys are smoothed...
Abstract
Chemical brightening (bright dipping) and electrolytic brightening (electropolishing) are essentially selective-dissolution processes, in which the high points of a rough surface of aluminum are attacked more rapidly than the depressions, and the peaks and valleys are smoothed to produce a bright and beautiful finish. This article discusses the metallurgical factors, optical factors, and applications of the chemical and electrolytic brightening. It compares the chemical brightening and electrolytic brightening, and presents the advantages of the chemical and electrolytic brightening processes in terms of performance and economy. The article describes the phosphoric-nitric acid baths and phosphoric-sulfuric acid baths used for chemical brightening. Solution compositions and operating conditions for three commercial electropolishing processes, as well as for suitable post-treatments, are presented in a table.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
..., and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating...
Abstract
Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing, and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating, electroless plating, porcelain enameling, and shot peening.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001250
EISBN: 978-1-62708-170-2
... Abstract A tin deposit provides sacrificial protection to copper, nickel, and many other nonferrous metals and alloys. Tin also provides good protection to steel. Tin can be deposited from either alkaline or acid electrolytes. This article explains the compositions and operating conditions...
Abstract
A tin deposit provides sacrificial protection to copper, nickel, and many other nonferrous metals and alloys. Tin also provides good protection to steel. Tin can be deposited from either alkaline or acid electrolytes. This article explains the compositions and operating conditions of these electrolytes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001281
EISBN: 978-1-62708-170-2
... of anodic coatings depends on the condition of the base metal before anodizing. Dull etching decreases luster; bright etching, chemical or electrolytic brightening, and buffing increase luster, either diffuse or specular. Most of the aluminum used in architectural applications is anodized. Increase...
Abstract
Anodizing refers to conversion coating of the surface of aluminum and its alloys to porous aluminum oxide. This article provides the reasons for performing anodizing and discusses the three principal types of anodizing processes, namely, chromic acid process, sulfuric acid process, and hard anodic process. It describes the limitations imposed by variables, such as alloy composition, surface finish, prior processing, temper or heat treatment, and the use of inserts, on the anodizing processes. The article explains the causes and means adopted for correcting several specific problems in anodizing aluminum. It also discusses the process control techniques and equipment used for anodizing. The article reviews the sealing processes for anodic coatings and the method for coloring the coatings. It concludes with a discussion on the effects of anodic coatings on the surface and mechanical properties of aluminum and its alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
... … 1–5 V … 4–12 V (a) Carrier and primary brighteners for acid chloride are proprietary, and exact recommendations of manufacturer should be followed. Values given are representative. Fig. 5 Comparison of cathode current efficiencies of bright zinc plating electrolytes Acid...
Abstract
Commercial zinc plating is accomplished by a number of distinctively different systems: cyanide baths, alkaline noncyanide baths, and acid chloride baths. This article focuses on the composition, advantages, disadvantages, operating parameters, and applications of each of the baths. It provides information on the control of thicknesses of zinc specified for service in various indoor and outdoor atmospheres and on the similarities between cadmium and zinc plating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001242
EISBN: 978-1-62708-170-2
... Abstract This article provides a detailed account of the various alkaline and acid plating baths used for electrolytic copper plating. Dilute cyanide and Rochelle cyanide baths, high-efficiency sodium and potassium cyanide baths, alkaline noncyanide copper plating baths, and alkaline copper...
Abstract
This article provides a detailed account of the various alkaline and acid plating baths used for electrolytic copper plating. Dilute cyanide and Rochelle cyanide baths, high-efficiency sodium and potassium cyanide baths, alkaline noncyanide copper plating baths, and alkaline copper pyrophosphate baths, are discussed. The article reviews acid plating baths such as copper sulfate bath and copper fluoborate bath. It also presents information on the surface preparation considerations, bath composition, and operating variables of copper plating as well as the equipment used.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001245
EISBN: 978-1-62708-170-2
... is consumed in the discharge of hydrogen ions from water. This reduces the cathode efficiency for nickel deposition from 100% to 92 to 97%, depending on the nature of the electrolyte. The discharged hydrogen atoms form bubbles of hydrogen gas at the cathode surface. Anode Efficiency Under normal...
Abstract
This article discusses the process considerations and deposit properties of nickel plating. It describes the Watts solution and the anode materials used. The article focuses on the nickel plating processes used for decorative, engineering, and electroforming purposes. It provides information on the quality control of nickel plating. It concludes with a review of the environmental, health, and safety considerations associated with nickel plating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... Abstract Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001253
EISBN: 978-1-62708-170-2
... Abstract Gold electroplating was invented in 1840. During the first 100 years electrodeposited gold was used primarily for its aesthetic appeal as a decorative finish. This article provides a description of the gold plating process and the electrolytes used. It discusses the decorative...
Abstract
Gold electroplating was invented in 1840. During the first 100 years electrodeposited gold was used primarily for its aesthetic appeal as a decorative finish. This article provides a description of the gold plating process and the electrolytes used. It discusses the decorative and industrial applications of gold plating. The article reviews factors affecting the dragout of gold solution.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding...
Abstract
This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar surface conditions are pickled in the same solutions using the same procedures. The article discusses three different surface conditions for pickling these nickel alloys: bright annealed white surface requiring removal of tarnish by flash pickling; bright annealed oxidized surface requiring removal of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding, polishing, buffing, brushing, and blasting.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003748
EISBN: 978-1-62708-177-1
... results and vary with electrolytes and metals. A preground sample is made the anode in an electrolytic cell, and the surface is smoothed and brightened by the anodic solution when the correct combination of bath temperature, voltage, current density, and time is applied. Variables that influence...
Abstract
Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article discusses the mechanism, operating procedure, advantages, and limitations of chemical and electrolytic polishing of samples for metallographic preparation. It provides information on the specimen preparation, apparatus used, and safety precautions to be followed during the polishing process. The various groups of electrolytes used in electropolishing of several metals and alloys are reviewed. The article concludes with a discussion on local electropolishing.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001247
EISBN: 978-1-62708-170-2
... Abstract Electrodeposits of cadmium are used to protect steel and cast iron against corrosion. This article provides an overview of the surface preparation of, and brighteners used in, cyanide baths. It focuses on the anode system, current density, deposition rates, and bath temperature...
Abstract
Electrodeposits of cadmium are used to protect steel and cast iron against corrosion. This article provides an overview of the surface preparation of, and brighteners used in, cyanide baths. It focuses on the anode system, current density, deposition rates, and bath temperature of cadmium plating with attention to the materials of construction and equipment used. The article provides a description of the selection of plating method with examples, applications, and several postplating processes of cadmium plating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001252
EISBN: 978-1-62708-170-2
... Abstract Electroplated silver is used in both decorative and functional applications, such as engineering and electrical/electronic applications. This article explains the solution formulations and specifications of electrolytes used in silver plating. decorative applications...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006522
EISBN: 978-1-62708-207-5
..., which are manifested in processes such as cleaning, brightening, etching, conversion coatings, electroplating, and anodizing. Point defects such as vacancies and dislocations agglomerate and accumulate at grain boundaries, which change the interfacial energy and confound the electrochemical reaction...
Abstract
This article discusses the properties of aluminum surface and the applications of aluminum alloys. It explains the effects of trace elements on aluminum alloys. The article considers microstructural development of aluminum in terms of the surface and explains how it will impact corrosion resistance and surface treatment. It describes the thermodynamics of equilibrium oxidation processes and non-equilibrium corrosion processes. The article provides a discussion on aluminum oxidation under atmospheric and dynamic conditions. It presents the potential/pH (Pourbaix) diagram for aluminum under atmospheric and dynamic conditions. The article also explains the polarization effects during the formation of stable aluminum oxide under dynamic conditions. It concludes with information on the designation system for aluminum finishes.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006552
EISBN: 978-1-62708-210-5
... (68 °F) O temper: 0.1 nΩ · m per K O and H18 tempers: 0.1 nΩ · m per K Reflectivity 85 to 90% to visible light for an electrolytically brightened surface … Average coefficient of linear thermal expansion (1199 and 1060) 23.6 μm/m °C (20 to 100 °C) 24.5 μm/m °C (20 to 200 °C) 25.5 μm/m °C...
Abstract
This article contains tables that provide values for compositions and physical and mechanical properties of 1xxx series aluminum alloys. Emphasis is placed on highly refined aluminum (1199) and high-purity aluminum (1060). Examples of common 1xxx series aluminum alloys specified in products standards are also presented. A figure illustrates the effect of purity on strength and hardness of unalloyed aluminum.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001258
EISBN: 978-1-62708-170-2
... expensive than those needed for bright nickel, substantially negating the saving on metal. The addition agent system is also more complex so that electrolyte control is more difficult. At equal thickness, nickel-iron plating is less resistant to corrosion than nickel, and the higher the iron content...
Abstract
Nickel alloys electroplated for engineering applications include nickel-iron, nickel-cobalt, nickel-manganese, and zinc-nickel. This article provides the process description and discusses the processing variables, properties, advantages, and disadvantages of nickel-iron, nickel-cobalt, nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001262
EISBN: 978-1-62708-170-2
... the brightness of the deposit because of the improved grain structures. If brightener levels are not reduced, longer pulses—i.e., lower frequencies and/or higher duty cycles—may be required ( Ref 3 ). Electrolyte Conductivity Electrolyte conductivity must be maintained at a high level to allow the peak...
Abstract
Pulsed-current plating can be defined simply as metal deposition by pulsed electrolysis, which involves using interrupted direct current to electroplate parts. This article discusses the advantages and limitations of pulsed-current plating and provides information on the process principles and control, solution composition, operating conditions, and necessary equipment modifications.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003663
EISBN: 978-1-62708-182-5
... materials must be made part of the corrosion system by exposing the appropriate surface area of those materials electrically connected to, and in the same electrolyte as, the component being tested. The principal advantages of component testing are the ease of interpretation of results and the lack...
Abstract
Galvanic corrosion, although listed as one of the forms of corrosion, is considered as a type of corrosion mechanism that is evaluated by modifying the tests used for conventional forms of corrosion. This article focuses on component testing, computer and physical scale modeling, and laboratory testing methods of evaluating galvanic corrosion. The laboratory tests fall into two categories, namely, electrochemical tests and specimen exposures.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003244
EISBN: 978-1-62708-199-3
... is applied to the electrolytic cell under specific conditions, and anodic dissolution produces leveling and brightening of the specimen surface. Fig. 13 Simple laboratory system for electropolishing and electroetching Fig. 14 A commercially available electrolytic polishing and etching system...
Abstract
This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters, either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing, and describes the procedures, advantages, and disadvantages of electrolytic and chemical polishing. It also provides a detailed account of procedures, precautions, and composition for preparation and handling of etchants.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006489
EISBN: 978-1-62708-207-5
... on aluminum products. The process may be used for final finishing, but it is more often used as an intermediate step prior to anodizing, conversion coating, lacquering, or other finishing treatments. Chemical etching also is used in conjunction with buffing or chemical brightening. The advantage...
Abstract
Etching aluminum can be a pretreatment step for anodizing, chemical conversion coating, metal-to-rubber bonding, and a host of other processes. Chemical etching, using either alkaline or acid solutions, produces a matte finish on aluminum products. This article describes the alkaline etching and acid etching of aluminum. Alkaline etching reduces or eliminates surface scratches, nicks, extrusion die lines, and other imperfections. Acid etching can be done without heavy smut problems, particularly on aluminum die castings. Hydrochloric, hydrofluoric, nitric, phosphoric, chromic, and sulfuric acids are used in acid etching. The article presents a flow chart of the operations used in acid etching.
1