Skip Nav Destination
Close Modal
Search Results for
electrolytes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1088
Search Results for electrolytes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1994
Fig. 1 Buffer curve for adjusting the pH of Rochelle electrolytes. Source: Ref 7
More
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003748
EISBN: 978-1-62708-177-1
... Abstract Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article...
Abstract
Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article discusses the mechanism, operating procedure, advantages, and limitations of chemical and electrolytic polishing of samples for metallographic preparation. It provides information on the specimen preparation, apparatus used, and safety precautions to be followed during the polishing process. The various groups of electrolytes used in electropolishing of several metals and alloys are reviewed. The article concludes with a discussion on local electropolishing.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006511
EISBN: 978-1-62708-207-5
... Abstract Chemical brightening (bright dipping) and electrolytic brightening (electropolishing) are essentially selective-dissolution processes, in which the high points of a rough surface of aluminum are attacked more rapidly than the depressions, and the peaks and valleys are smoothed...
Abstract
Chemical brightening (bright dipping) and electrolytic brightening (electropolishing) are essentially selective-dissolution processes, in which the high points of a rough surface of aluminum are attacked more rapidly than the depressions, and the peaks and valleys are smoothed to produce a bright and beautiful finish. This article discusses the metallurgical factors, optical factors, and applications of the chemical and electrolytic brightening. It compares the chemical brightening and electrolytic brightening, and presents the advantages of the chemical and electrolytic brightening processes in terms of performance and economy. The article describes the phosphoric-nitric acid baths and phosphoric-sulfuric acid baths used for chemical brightening. Solution compositions and operating conditions for three commercial electropolishing processes, as well as for suitable post-treatments, are presented in a table.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002164
EISBN: 978-1-62708-188-7
... Abstract Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process...
Abstract
Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process, including turbine blade cooling holes, turbine vane cooling holes, turbine disk cooling passages, oil passages, and fuel nozzles. It describes the limitations and advantages of the STEM process. The article discusses the various tool parts of the STEM system, including the holding fixture, guide for cathodes, cathodes, and cathode holder/manifold. The article concludes with information on the process parameters of the STEM system.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
... such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders...
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Image
Published: 01 August 2013
Fig. 6 Corroding interface of a material immersed in an electrolyte showing the establishment of a double-layer capacitance
More
Image
Published: 01 August 2013
Fig. 4 Electrical resistivity versus temperature for electrolytic iron and a 1% C steel. Source: Ref 4
More
Image
in Properties of Wrought Coppers and Copper Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 4 Variation of tensile properties and grain size of electrolytic tough pitch copper (C11000) and similar coppers
More
Image
in Copper Powder Metallurgy Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 6 Electrolytic copper powder showing dendritic structure. 85×
More
Image
Published: 30 September 2015
Fig. 4 Electrolytic copper powder showing dendritic structure. Original magnification: 85×
More
Image
Published: 30 September 2015
Fig. 5 Electrolytic silver powder. Original magnification: 60×
More
Image
Published: 30 September 2015
Fig. 8 Relationship between flake size and milling time for electrolytic iron milled in a Megapact vibratory ball mill. Source: Ref 4
More
Image
Published: 30 September 2015
Fig. 14 Pickup of oxygen, carbon, and nitrogen in electrolytic iron. Milled in heptane in a Megapact vibratory mill. Source: Ref 7
More
Image
Published: 30 September 2015
Fig. 4 Particle images of commercial electrolytic iron powders (a) A and (b) B. Top row: SEM images; bottom row: cross section optical microscope images
More
Image
Published: 01 January 2006
Fig. 15 Interior of good aluminum electrolytic capacitor (millimeter scale)
More
Image
Published: 01 January 2006
Fig. 16 Interior of failed aluminum electrolytic capacitor showing effects of corrosion (millimeter scale)
More
Image
Published: 01 January 2006
Fig. 5 Interior of failed aluminum electrolytic capacitor showing effects of corrosion. Note that the positive terminal has significant damage, while the negative terminal is not degraded. Millimeter scale. See the article “Corrosion in Passive Electrical Components” in this Volume.
More
Image
Published: 01 January 2006
Fig. 11 Relationship of varying line current and pipe-to-electrolyte potentials over time
More
Image
in Corrosion of Electronic Equipment in Military Environments
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 2 Schematic showing an electrolyte bridging two circuits on an electronic board. (a) Transverse view of the board. (b) Top-down view of the circuits on the board. Source: Ref 22
More
1