Skip Nav Destination
Close Modal
Search Results for
electrolyte cleaning
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 517 Search Results for
electrolyte cleaning
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001269
EISBN: 978-1-62708-170-2
... Abstract This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace...
Abstract
This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings. abrasive blasting acid cleaning anodizing coating electrolytic cleaning...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003596
EISBN: 978-1-62708-182-5
... Abstract This article discusses four subsystems of the electrochemical machining (ECM) system: power source, electrolyte cleaning and supply system, tool and tool-feed system, and workpiece and workpiece-holding system. It describes the theory of ECM and provides information on the electrolytes...
Abstract
This article discusses four subsystems of the electrochemical machining (ECM) system: power source, electrolyte cleaning and supply system, tool and tool-feed system, and workpiece and workpiece-holding system. It describes the theory of ECM and provides information on the electrolytes used in ECM. The article reviews the methods associated with workpiece shape prediction. The procedures and integrated approach for the tool design in ECM are discussed. The article also explains the process control, capabilities, and the limitations of ECM. It concludes with information on the applications of ECM.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001221
EISBN: 978-1-62708-170-2
... compounds from magnetic particle and fluorescent penetrant inspection. The cleaning processes include emulsion cleaning, electrolytic alkaline cleaning, acid cleaning, solvent cleaning, vapor degreasing, alkaline cleaning, ultrasonic cleaning, and glass bead cleaning. The article provides guidelines...
Abstract
This article describes the basic attributes of the most widely used metal surface cleaning processes to remove pigmented drawing compounds, unpigmented oil and grease, chips, cutting fluids, polishing and buffing compounds, rust and scale from steel parts, and residues and lapping compounds from magnetic particle and fluorescent penetrant inspection. The cleaning processes include emulsion cleaning, electrolytic alkaline cleaning, acid cleaning, solvent cleaning, vapor degreasing, alkaline cleaning, ultrasonic cleaning, and glass bead cleaning. The article provides guidelines for choosing an appropriate process for particular applications and discusses eight well-known methods for determining the degree of cleanliness of the work surface.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001227
EISBN: 978-1-62708-170-2
... cleaners for cleaning ferrous metals Composition of each constituent is given in percent by weight. Constituent Immersion Spray Barrel Wipe Electrolytic Phosphoric acid 70 … 70 … … 15–25 … Sodium acid pyrophosphate … 16.5 … 16.5 16.5 … … Sodium bisulfate … 80 … 80...
Abstract
This article focuses on the mineral and organic acid cleaning of iron and steel. It begins with a discussion on the application methods, process selection criteria, solution composition, equipment used, and control of process variables in mineral acid cleaning. The article then describes the advantages and disadvantages of organic acid cleaning. Applications, including boiler cleaning, stainless steel cleaning, and removal of iron- and copper-bearing deposits, are discussed. The article concludes with an overview of acid cleaning of nonferrous alloys.
Image
Published: 01 January 2002
). 7.5×. (b) Scanning electron fractograph (secondary electron image) of area surrounding primary origin (in circle). 50×. White areas are corrosion pits. Black areas, one of which is indicated by arrow, are remnants of corrosion product left after the fracture surface was electrolytically cleaned.
More
Image
Published: 15 January 2021
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003213
EISBN: 978-1-62708-199-3
... describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition. abrasive blast...
Abstract
Metal surfaces must often be cleaned before subsequent operations to remove unwanted substances such as pigmented drawing compounds, unpigmented oil and grease, chips and cutting fluids, polishing and buffing compounds, rust and scale, and miscellaneous contaminants. The article describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005777
EISBN: 978-1-62708-165-8
... are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards...
Abstract
This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely, mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards that may be associated with each cleaning method and the general control measures to be used for each hazard are tabulated.
Image
Published: 01 January 1994
to inspection, plating, and post-treatments. (a) When solution is sprayed, time is 5 to 15 s. (b) Heavy-duty cleaner. For electrolytic cleaning, concentration of alkali is 45 to 60 g/L (6 to 8 oz/gal), temperature is 82 °C (180 °F), and time is 1 to 3 min. (c) When a spray rinse is used, water
More
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
..., and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating...
Abstract
Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing, and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating, electroless plating, porcelain enameling, and shot peening.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... or electrolytic cleaning. Precleaning reduces the contamination of the alkaline solution, extending the life of the solution. Electrolytic Alkaline Cleaning Electrolytic alkaline cleaning is the most reliable method for cleaning parts for plating. The work is the cathode, and steel electrodes...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001017
EISBN: 978-1-62708-161-0
...) or through an electrolytic cell containing a solution of a zinc salt (electrogalvanized). Galvanizing gives corrosion protection to wire. The wire is usually annealed in the same operation by being passed through molten lead, molten salt, or a fluidized bed, followed by cleaning or pickling, prior...
Abstract
This article begins with an overview of steel wire configurations and sizes followed by a discussion on various wiremaking practices. The wiredrawing operation is discussed, including cleaning, die design, use of lubricants and welds, finishes, coating, and thermal treatments. Metallic coatings can be applied to wire by various methods, including hot dip processes, electrolytic process, and metal cladding by rolling metallic strip over the wire. These wires are normally grouped into broad usage categories. These categories, as well as some items in each category, are described in the article under their quality descriptions or commodity names. These include low-carbon steel wire for general usage, wire for structural applications, wire for packaging and container applications, wire for prestressed concrete, wire for electrical or conductor applications, rope wire, mechanical spring wire for general use, wire for fasteners, mechanical spring wire for special applications, upholstery spring construction wire, and alloy wire.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006530
EISBN: 978-1-62708-207-5
..., nitric/hydrofluoric, and phosphoric acids can be used. Also, there are continuous treatment lines that use electrolytic cleaning in a phosphoric acid electrolyte. For high-quality adhesive bonding, the alkaline or acidic cleaning/etching step is followed by the controlled buildup of a new oxide layer...
Abstract
Adhesive bonding is a proven technology in the manufacture of automotive assemblies, helping carmakers achieve weight reduction goals without compromising body stiffness, crash performance, and noise-vibration-handling characteristics. This article discusses the advantages and limitations of adhesive-bonded aluminum joints and the procedures used to produce them. It addresses surface preparation, the addition of interfacial coatings and primers, and the application of thermoplastic and thermosetting resins. The article examines the nature and role of the various layers that constitute the joint and explains how each contributes to performance. It also discusses adhesive selection factors, joint design, and testing procedures.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003597
EISBN: 978-1-62708-182-5
... and workpiece. (c) Dummy workpiece and tool. Source: Ref 8 Electrochemical Deep-Hole Drilling System The electrochemical deep-hole drilling system shown in Fig. 2 includes four subsystems: power supply, tool and tool feed, electrolyte cleaning and supply, and workholding and machining chamber...
Abstract
Specific machining processes that employ electrochemical machining technology include deburring and deep-hole drilling. This article describes the principle and applications of electrochemical deburring as well as the machine tools used in the process. The system, process capabilities, and applications of electrochemical deep-hole drilling are also discussed. The article also reviews the pulse electrochemical machining.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001242
EISBN: 978-1-62708-170-2
... the rates for the dilute cyanide and Rochelle cyanide baths. Parts to be plated in the high-efficiency electrolytes must be cleaned thoroughly, or the plate will be of inferior quality and the bath will require frequent purification for the removal of organic contaminants. The potassium complexes formed...
Abstract
This article provides a detailed account of the various alkaline and acid plating baths used for electrolytic copper plating. Dilute cyanide and Rochelle cyanide baths, high-efficiency sodium and potassium cyanide baths, alkaline noncyanide copper plating baths, and alkaline copper pyrophosphate baths, are discussed. The article reviews acid plating baths such as copper sulfate bath and copper fluoborate bath. It also presents information on the surface preparation considerations, bath composition, and operating variables of copper plating as well as the equipment used.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... soak or electrolytic cleaning. Precleaning reduces the contamination of the alkaline solution, extending the life of the solution. Thorough alkaline cleaning must follow the emulsion cleaning cycle before the subsequent acid cycles. Extreme caution must be exercised to avoid dragging emulsifiers...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004173
EISBN: 978-1-62708-184-9
... operation, the circuit board was cleaned in softened (i.e., sodium-containing) water. The result of this process was that chlorine-containing solder flux and sodium-containing water wicked into the areas between solder joints by way of the terminal-entry gaps. The resulting electrolyte then supported...
Abstract
This article focuses on the various types of corrosion-related failure mechanisms and their effects on passive electrical components. The types include halide-induced corrosion, organic-acid-induced corrosion, electrochemical metal migration, silver tarnish, fretting, and metal whiskers. The passive electrical components include resistors, capacitors, wound components, sensors, transducers, relays, switches, connectors, printed circuit boards, and hardware.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001312
EISBN: 978-1-62708-170-2
... attractive). Electrolytic alkaline cleaning is also used. In the electrolytic system, the work can be either anodic or cathodic polarity, provided the voltage and current can be controlled to avoid anodizing or spark discharge, and subsequent pitting. Removing these soils is essential before acid etching...
Abstract
Zirconium and hafnium surfaces require cleaning and finishing for reasons such as preparation for joining, heat treatment, plating, forming, and producing final surface finishes. This article provides information on various surface treatment processes, surface soil removal, blast cleaning, chemical descaling, pickling or etching, anodizing, autoclaving, polishing, buffing, vapor phase nitriding, and electroplating. Applications of these surface treatment processes are also reviewed.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002160
EISBN: 978-1-62708-188-7
... the cathode surfaces clean. When using virtual electrodes (glass impingement nozzles), the plate out is essentially negated. Nevertheless, the contaminant level in solution keeps increasing and requires conditioning of electrolyte. Sludge Sludge, consisting of insoluble hydroxides or hydrated oxides...
Abstract
Electrochemical machining (ECM) is the controlled removal of metal by anodic dissolution in an electrolytic cell in which the workpiece is the anode and the tool is the cathode. This article begins with a description of the ECM system and then discusses the primary variables that affect current density and the material removal rate in the ECM process. It reviews the various characteristics of electrolytes and considers tool material and design. It also provides an overview of the properties of the workpiece and defines the surface finish and accuracy of an electrochemically machined sample. The variety of work done by electrochemical machining is also exemplified in the article.
1