Skip Nav Destination
Close Modal
By
William G. Yelton, Jason C. Harper
By
Barry Meyers, Stephen Lynn, Elwin Jang
Search Results for
electroless nickel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 162
Search Results for electroless nickel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001264
EISBN: 978-1-62708-170-2
... Abstract Electroless nickel plating is used to deposit nickel without the use of an electric current. This article provides an overview of the solution composition and characteristics of the electroless nickel bath. It focuses on the metallurgical, mechanical and physical properties...
Abstract
Electroless nickel plating is used to deposit nickel without the use of an electric current. This article provides an overview of the solution composition and characteristics of the electroless nickel bath. It focuses on the metallurgical, mechanical and physical properties of electroless nickel-phosphorus coatings and electroless nickel-boron coatings. The effect of electroless nickel coatings on the fatigue strength of steel is also described. The article includes information on the recommended pretreatment procedures for different ferrous alloys, aluminum alloys, and copper alloys. It presents a detailed account of the equipment and various processes—including bulk and barrel plating—involved in electroless nickel plating, and discusses hydrogen relief methods. The article includes a comprehensive table on nickel plating applications, and concludes with information on electroless nickel coatings on composites and plastics.
Image
Example of the use of electroless nickel plating to provide edge retention....
Available to PurchasePublished: 01 January 1987
Fig. 15 Example of the use of electroless nickel plating to provide edge retention. The micrograph shows wear damage at the surface of a forged alloy steel Medart roll. Etched with 2% nital. 285×
More
Image
Weld interface surface after fracture of roll-bonded electroless nickel-pla...
Available to PurchasePublished: 31 October 2011
Fig. 12 Weld interface surface after fracture of roll-bonded electroless nickel-plated aluminum-aluminum. Source: 11
More
Image
Limits of solubility for orthophosphite in electroless nickel solutions. So...
Available to PurchasePublished: 01 January 1994
Fig. 2 Limits of solubility for orthophosphite in electroless nickel solutions. Solutions contain 30 g/L (4 oz/gal) nickel chloride (NiCl 2 ) and 10 g/L (1.3 oz/gal) sodium hypophosphite (NaH 2 PO 2 ). ○, without a complexing agent; ●, with 15 g/L (2 oz/gal) citric acid; Δ, with 39 g/L (5.2 oz
More
Image
Effect of succinate additions on the plating rate of an electroless nickel ...
Available to PurchasePublished: 01 January 1994
Fig. 3 Effect of succinate additions on the plating rate of an electroless nickel solution. Solutions contain 16 g/L (2.1 oz/gal) nickel chloride (NiCl 2 ) and 24 g/L (3.2 oz/gal) sodium hypophosphite (NaH 2 PO 2 ). 5 g/L (0.7 oz/gal) ammonium hydroxide (NH 4 OH) and 1 mg/L (4 mg/gal) lead
More
Image
Cross section of a 75 μm (3 mils) thick electroless nickel deposit. Contain...
Available to PurchasePublished: 01 January 1994
Fig. 6 Cross section of a 75 μm (3 mils) thick electroless nickel deposit. Contains approximately 10% phosphorus and less than 0.05% other elements. 400×
More
Image
Effect of phosphorus content on the internal stress of electroless nickel d...
Available to PurchasePublished: 01 January 1994
Fig. 7 Effect of phosphorus content on the internal stress of electroless nickel deposits on steel
More
Image
Effect of heat treatment on the ductility of a 6% P electroless nickel coat...
Available to PurchasePublished: 01 January 1994
Image
Effect of phosphorus content on the wear of electroless nickel coatings in ...
Available to PurchasePublished: 01 January 1994
Fig. 16 Effect of phosphorus content on the wear of electroless nickel coatings in rotating ball tests
More
Image
Twin tank system for electroless nickel plating. Tanks are used alternately...
Available to PurchasePublished: 01 January 1994
Fig. 20 Twin tank system for electroless nickel plating. Tanks are used alternately. While one tank is being used to plate, the second is being passivated. Cylindrical tank is used to store 30% nitric acid for passivation.
More
Image
Electroless nickel-thallium-boron deposit. The hard columnar structure incr...
Available to PurchasePublished: 01 January 1994
Fig. 1 Electroless nickel-thallium-boron deposit. The hard columnar structure increases resistance to fretting wear and the ability of the deposit to retain oil. Additional lubrication is provided with the presence of thallium, which interferes with the galling process between nickel and iron.
More
Image
A low-carbon steel sheet plated with electroless nickel showing (a) damage ...
Available to Purchase
in Metallography and Microstructures of Low-Carbon and Coated Steels
> Metallography and Microstructures
Published: 01 December 2004
Fig. 19 A low-carbon steel sheet plated with electroless nickel showing (a) damage to the coating from mounting in a thermosetting phenolic resin and (b) the lack of damage when mounted in a castable epoxy. As-polished. 100×
More
Image
Depth of electroless nickel plating on AISI 4150 alloy steel as a function ...
Available to PurchasePublished: 15 December 2019
Fig. 1 Depth of electroless nickel plating on AISI 4150 alloy steel as a function of time at 95 °C (205 °F)
More
Image
Metal injection molding Fe-2%Ni, electroless nickel-Teflon plated burst dis...
Available to PurchasePublished: 30 September 2015
Fig. 11 Metal injection molding Fe-2%Ni, electroless nickel-Teflon plated burst disk wedge (sintered density = 7.6 g/cm 3 , or 0.274 lb/in. 3 ) used in an automobile airbag-actuation assembly. (Teflon is a registered trademark of DuPont.) Courtesy of Kinetics
More
Book Chapter
Nonelectrolytic Deposition Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003216
EISBN: 978-1-62708-199-3
... Abstract This article describes the steps, bath composition and characteristics, equipment, plating rate, deposit thickness, and applications for different types of nonelectrolytic deposition processes, including electroless nickel plating, electroless copper plating and mechanical plating...
Abstract
This article describes the steps, bath composition and characteristics, equipment, plating rate, deposit thickness, and applications for different types of nonelectrolytic deposition processes, including electroless nickel plating, electroless copper plating and mechanical plating.
Book Chapter
Electroplated Coatings for Friction, Lubrication, and Wear Technology
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion...
Abstract
This article discusses the fundamentals of electroplating processes, including pre-electroplating and surface-preparation processes. It illustrates the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion on the common issues encountered with electroplating.
Book Chapter
Chromium Elimination in Surface Engineering
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... Abstract This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article...
Abstract
This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article discusses the material and process substitutions that can be used to eliminate the use or emissions of chromium in industrial processes. It describes the physical characteristics of each coating, economics, environmental impacts, advantages, and disadvantages of alternative processes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
... and require little metal replacement because of the very thin deposits produced. Displacement tin-lead solder processes are the exception, producing thicker deposits requiring more frequent additions. Types of Electroless Alloy Plating Systems Most electroless alloy systems are based on nickel alloys...
Abstract
Metallic nonelectrolytic alloy coatings produced from aqueous solutions are commercially used in several industries, including electronics, aerospace, medical, oil and gas production, chemical processing, and automotive. Nonelectrolytic coating systems use two types of reactions to deposit metal onto a part: electroless and displacement. This article explains the various types of electroless and dispersion alloy coating systems. It provides information on the processing of parts, process control, deposit analysis, and equipment used for coating nonelectrolytic displacement alloys. The article concludes with a discussion on the safety and environmental concerns associated with nonelectrolytic deposition processes.
Image
Calculated and experimental weld shear strength as a function of reduction ...
Available to PurchasePublished: 31 October 2011
Fig. 11 Calculated and experimental weld shear strength as a function of reduction in roll bonding of (a) aluminum-aluminum with one-sided, electroless nickel plating and (b) aluminum-mild steel with electroless nickel plating on steel. Source: Ref 9
More
Image
Effect of number of cycles on wear loss of plated pin versus steel blocks i...
Available to PurchasePublished: 01 January 1994
Fig. 5 Effect of number of cycles on wear loss of plated pin versus steel blocks in a Falex test for three chromium deposits (CrA, CrB, and CrC), heat treated electroless nickel deposits (EN400 and EN600), a non-heat-treated electroless nickel deposit (EN), and two electroplated nickel
More
1