Skip Nav Destination
Close Modal
Search Results for
electroless alloy deposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 104 Search Results for
electroless alloy deposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
... to deposit metal onto a part: electroless and displacement. This article explains the various types of electroless and dispersion alloy coating systems. It provides information on the processing of parts, process control, deposit analysis, and equipment used for coating nonelectrolytic displacement alloys...
Abstract
Metallic nonelectrolytic alloy coatings produced from aqueous solutions are commercially used in several industries, including electronics, aerospace, medical, oil and gas production, chemical processing, and automotive. Nonelectrolytic coating systems use two types of reactions to deposit metal onto a part: electroless and displacement. This article explains the various types of electroless and dispersion alloy coating systems. It provides information on the processing of parts, process control, deposit analysis, and equipment used for coating nonelectrolytic displacement alloys. The article concludes with a discussion on the safety and environmental concerns associated with nonelectrolytic deposition processes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001264
EISBN: 978-1-62708-170-2
... characteristics due to contamination of nickel plate with nickel phosphorus deposits Need to copper strike plate alloys containing significant amounts of lead, tin, cadmium, and zinc before electroless nickel can be applied Slower plating rate, as compared to electrolytic methods Bath Composition...
Abstract
Electroless nickel plating is used to deposit nickel without the use of an electric current. This article provides an overview of the solution composition and characteristics of the electroless nickel bath. It focuses on the metallurgical, mechanical and physical properties of electroless nickel-phosphorus coatings and electroless nickel-boron coatings. The effect of electroless nickel coatings on the fatigue strength of steel is also described. The article includes information on the recommended pretreatment procedures for different ferrous alloys, aluminum alloys, and copper alloys. It presents a detailed account of the equipment and various processes—including bulk and barrel plating—involved in electroless nickel plating, and discusses hydrogen relief methods. The article includes a comprehensive table on nickel plating applications, and concludes with information on electroless nickel coatings on composites and plastics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003216
EISBN: 978-1-62708-199-3
... by an autocatalytic chemical reduction of nickel ions by hypophosphite, aminoborane, or borohydride compounds. Nickel-phosphorus (6 to 12% P), nickel-boron (∼5% B), and composite electroless coatings are deposited on carbon and alloy steels, 300 and 400 series stainless steels, aluminum alloys, copper alloys...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
...-phosphorus alloy system. This system yields deposits that have high hardness, which can be further hardened by heat treatment following electroless plating. Nickel-phosphorus coatings provide a low coefficient of friction, low surface-to-surface adhesion (high wear resistance), and have excellent corrosion...
Abstract
This article discusses the fundamentals of electroplating processes, including pre-electroplating and surface-preparation processes. It illustrates the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion on the common issues encountered with electroplating.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003022
EISBN: 978-1-62708-200-6
... with the requirements for metallizing in mind. Electroless Plating Electroless (autocatalytic) plating is the deposition of a metallic coating (usually nickel or copper) by a controlled chemical reduction that is catalyzed by the metal or alloy being deposited. For plastics, it is deposited on a previously...
Abstract
The process of coating plastics with metals for functional purposes is called metallizing of plastics. This article discusses the metallizing of plastics, provides information on its history, and gives a short note on applications and adhesion properties of metallic coatings. It also discusses the selection of plastics for plating. This article also describes metallizing techniques, including plating (electrolytic or electroplating), vacuum metallizing and thermal spraying, and environmental considerations. The article discusses the quality assurance procedures for metallized plastic parts which include tests that assess the quality of the finish, coating thickness, adhesion, and corrosion resistance, and gives a short note on service performance, which includes service condition classifications.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
... roughening, anodizing, and immersion procedures along with expected results. aluminum plating electroless deposition plating electrolysis electroplating immersion plating plating metals strike layer METALLIC PLATING on aluminum alloys has a variety of applications and purposes...
Abstract
Aluminum components are often plated with other metals to mitigate the effects of corrosion and wear, improve application performance, and extend service life. This article discusses some of the more common aluminum plating processes, including electroplating, immersion plating, and electroless plating, and describes various plating materials and the types of applications in which they are used. It provides critical processing details such as temperatures, ratios, ranges, times, and rates. The article explains how to prepare aluminum components for electroplating, discussing surface roughening, anodizing, and immersion procedures along with expected results.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001265
EISBN: 978-1-62708-170-2
... Abstract Electroless, or autocatalytic, metal plating is a nonelectrolytic method of deposition from solution that can be plated uniformly over all surfaces, regardless of size and shape. The plating's ability to plate onto nonconductors is an advantage that contributes to the choice...
Abstract
Electroless, or autocatalytic, metal plating is a nonelectrolytic method of deposition from solution that can be plated uniformly over all surfaces, regardless of size and shape. The plating's ability to plate onto nonconductors is an advantage that contributes to the choice of electroless copper in various applications. This article provides information on the bath chemistry and deposit properties of electroless copper and discusses the applications of electroless copper plating, such as printed wiring boards, decorative plating-on-plastic, electromagnetic interference shielding, and hybrid and other advanced applications. It describes two commercial processes, pretreatment and post-treatment. The article reviews the solutions used, controls and control equipment, and performance criteria of electroless copper plating. It concludes with information on the environmental and safety issues associated with electroless copper plating.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... plating are discussed below. These include electroless nickel in certain applications, several nickel-tungsten composite plating options, and spray applications such as plasma spray coatings. (There are other possible substitutions, such as vacuum deposition processes and cobalt alloys...
Abstract
This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article discusses the material and process substitutions that can be used to eliminate the use or emissions of chromium in industrial processes. It describes the physical characteristics of each coating, economics, environmental impacts, advantages, and disadvantages of alternative processes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
...) plating. This last method is widely used on parts that cannot be properly plated by electrodeposition. The limitation is that the most prevalent coating applied autocatalytically—electroless nickel—deposits an alloy of nickel and phosphorus (phosphorus content varies with the solution used...
Abstract
This article discusses the various factors that affect the corrosion performance of electroplated coatings. It describes the effects of environment and the deposition process on substrate coatings. The article provides a discussion on the electrochemical techniques capable of predicting the corrosion performance of a plated part. It reviews the designs of coating systems for optimal protection of the substrate. The article also discusses controlled weathering tests and accelerated tests used to predict and determine the relative durability of the coating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... alloys Table 1 Technology options for the deposition of chromium-base alloys Type of bath Aqueous Acid Alkaline Nonaqueous Organic Molten salt Applied current None (electroless) Conventional direct current Pulsed direct current Periodic reversed direct...
Abstract
Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel, and chromium-iron-nickel alloys.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
... that is not susceptible to spallation and can easily be applied free of porosity or other defects. Welded deposits of surface alloys can be applied in thicknesses greater than most other techniques, typically in the range of 3 to 10 mm. Most welding processes are used for application of surface coatings and on-site...
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... coating coloring copper copper alloys corrosion resistance electrochemical cleaning electroless plating electroplating finishing immersion plating mass finishing organic coatings passivation pickling polishing surface treatment COPPER and copper alloys constitute one of the major...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Image
Published: 01 January 1994
Fig. 11 Preparing magnesium alloys for nickel plating Solution No. Type of solution Composition Amount Operating temperature, °C (°F) Cycle time, min Tank material 1 Alkaline cleaner (a) (b) (b) 82–100 (180–212) 3–10 Low-carbon steel 2 Cold rinse Water
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
..., because of its low current efficiency and high internal stress. In such cases, most of the deposit thickness is composed of nickel, with chromium constituting only a thin outer layer. For additional information, see the articles “Nickel Plating” and “Nickel Alloy Plating” in this Volume. Electroless...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003212
EISBN: 978-1-62708-199-3
.... , Ed., Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions , Noyes Publications , 1990 • Safranek W.A. , The Properties of Electrodeposited Metals and Alloys: A Handbook , 2nd ed. , American Electroplaters and Surface Finishers Society...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002494
EISBN: 978-1-62708-194-8
... of the plated coating, especially if there is a posttreatment step that requires the part to be heated (such as for electroless nickel, cadmium, and hard chromium deposition). For parts that will be sprayed, especially with paint, another problem with deep recesses, closely spaced, large fins or partitions...
Abstract
This article presents general design principles for different types of surface-finishing processes, such as cleaning, organic coatings, and inorganic coatings applied by a variety of techniques. It discusses the factors that influence the selection of surface-finishing processes. These include fabrication processes, size, weight, functional requirements, and design features. The article discusses the design as an integral part of manufacturing. It contains tables that summarize the design limitations for selected surface-preparation, organic finishing, and inorganic finishing processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, plus sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. Alkaline Cyanide Plating Baths Alkaline cyanide copper solutions are used to plate the initial deposits (as a strike) on a variety...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
... on the solderable layer. This solderable surface can be either the base material surface itself or a coating deposited by electroplating, electroless plating, evaporation, pretinning (solder dip coating), sputtering, or chemical vapor deposition (CVD). The protective layer is typically an electroplated film...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
1