Skip Nav Destination
Close Modal
Search Results for
electrogalvanized steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 50 Search Results for
electrogalvanized steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 31 Electrogalvanized 1006, UNS G10060, steel. Careful etching with a chromic acid/sodium sulfate etchant, with a concentration intermediate between etchant 1 and 2 in Table 1 , reveals the interface between layers of zinc deposited in individual cells in a continuous multicell
More
Image
in Metallography and Microstructures of Low-Carbon and Coated Steels
> Metallography and Microstructures
Published: 01 December 2004
Fig. 46 Microstructure of an electrogalvanized coating on a low-carbon steel sheet. Etched in 1% nitric acid/amyl alcohol. 100×
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004162
EISBN: 978-1-62708-184-9
...-resistant sheet metals, such as electrogalvanized steel, hot dip galvanized steel, and hot dip galvannealed steel, are reviewed. The article provides information on the paint and sealant systems for corrosion control in automotive body applications. automotive body applications corrosion control...
Abstract
This article discusses the commonly encountered forms of automotive body corrosion. The corrosion forms include general or uniform corrosion, cosmetic or under-film corrosion, galvanic corrosion, crevice corrosion, poultice or under-deposit corrosion, and pitting corrosion. Corrosion-resistant sheet metals, such as electrogalvanized steel, hot dip galvanized steel, and hot dip galvannealed steel, are reviewed. The article provides information on the paint and sealant systems for corrosion control in automotive body applications.
Image
Published: 01 August 2013
Fig. 11 Microstructure of a cold-sprayed Zn-20Al alloy powder layer on EG60 electrogalvanized steel sheet. Source: Ref 19
More
Image
Published: 01 January 2003
Fig. 1 Scanning electron micrographs and x-ray diffraction patterns comparing crystalline and amorphous phosphate layer. (a) Tri-cation phosphate layer of a spray process. (b) Tri-cation phosphate layer of a no-rinse process. Substrate is electrogalvanized steel.
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001271
EISBN: 978-1-62708-170-2
...-plated strip, referred to as electrogalvanized sheet , but also from steel sheet plated with zinc alloys (Zn-Ni or Zn-Fe). From 1986 to 1991, in the United States as well as throughout Europe and Asia, there was a tremendous increase in electroplating capacity and in the production...
Abstract
This article explains the applications of continuous electroplated steel. For each category of application, the type of coating needed and the key attributes of the coating are discussed. The bulk of the article describes electrodeposition technology, including plating line components and process classification.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005164
EISBN: 978-1-62708-186-3
... lubricants, or when developing new parts using prototype tooling. Both electrogalvanized and galvannealed steels have been shown to be sensitive to changes in tooling material between gray cast iron, nitrided gray cast iron, torch-hardened cast iron, bare steel, TiN-coated steel, and CrN-coated steel ( Ref 1...
Abstract
This article provides an overview of some common sheet steel coatings available. It discusses the formability differences between coated and bare steel and provides some general guidelines on the forming of coated steels. Coated steels are classified according to the nature of the substrate, the type of coating, and the method used for its application. The article describes various coating types for steels such as zinc-coated steels, aluminum-coated steels, tin-coated steels, terne-coated steels, and organic-coated steels.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
..., hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment. alloy steel cadmium plating carbon...
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
... corrosion is the largest single application for the metal worldwide. Metallic zinc coatings are applied to steels: From a molten metal bath (hot dip galvanizing) By electrochemical means (continuous electrogalvanizing and batch-process electroplating) From a molten spray of molten metal (thermal...
Abstract
This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed as well as the three main types of wrought products: flat-rolled products, wire-drawn products, and extruded and forged products. The article also provides a section on the corrosion resistance of zinc and zinc coatings in various atmospheres.
Image
Published: 01 January 2003
Fig. 4 Delamination of painted steel substrates treated with different zinc phosphatations after 1 year outdoor exposure. Substrate CRS, cold rolled steel; EG, electrogalvanized. Coating electrophoretic paint + filler + top-coat. Artificial damage by Clemen scratch, like a cut with a scalpel
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
...-coated steel components for body, chassis, and power train applications in a 1986 car manufactured by a U.S. automaker. Source: Ref 1 Metallic zinc is applied to iron and steel by three processes: hot dip galvanizing, electrogalvanizing, and zinc spraying. Most galvanized steel sheet is coated...
Abstract
Steel sheet is often coated in coil form prior to fabrication to save time, reduce production costs, and streamline operations. This article examines the most common precoating methods and provides a metallurgical understanding of how they impact the manufacturability, performance, and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004144
EISBN: 978-1-62708-184-9
... to electric rail corrosion and corrosion in bridges and highways. The automobile industry, for the most part, has become one of the major success stories in corrosion management. The use of electrogalvanized steel, aluminum, and polymers has had a major impact on improving the corrosion performance...
Abstract
This article provides a summary of the concepts discussed in the Section “Corrosion in Specific Industries” in the ASM Handbook, Volume 13C:Corrosion: Environments and Industries. This Section applies the fundamental understanding of corrosion and knowledge of materials of construction to practical applications. The industries addressed are nuclear power, fossil and alternative fuel, land transportation, air transportation, microelectronics, chemical processing, pulp and paper, food and beverage, pharmaceutical and medical technology, petroleum and petrochemical, building, and mining and metal processing.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... of the pregalvanized sheet to accommodate a cold-sprayed layer of different composition can be seen in Fig. 11 , where a Zn-20Al alloy powder was applied to an EG60 electrogalvanized steel panel. EG60 has a nominal zinc coating thickness of approximately 8 μm (0.3 mil). Zinc-aluminum alloys are expected to show...
Abstract
The distinguishing feature of the cold spray process, when compared with the conventional thermal spray process, is its ability to produce coatings with high-velocity rather than high-temperature particle jet. This article provides an overview of the cold spray process and the parameters that affect both the process deposition efficiency and properties of the prepared coatings. It describes a variety of cold spray coating materials, namely, pure metals, ferrous and nonferrous metal alloys, composites, and cermets. The article presents various industrial applications of cold spray coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
... in addition to Al have a spangled appearance. Coatings produced from baths free of lead or antimony have a smooth and spangle-free surface. Electrogalvanized steels display a smooth, uniform, and spangle-free coating and do not have an intermetallic layer. Electrogalvanized steels, and zinc-iron alloy...
Abstract
From the standpoint of corrosion protection of iron and steel, metallic coatings can be classified into two types: noble coatings and sacrificial coatings. This article focuses on hotdipped zinc, aluminum, zinc-aluminum alloy and aluminum-zinc alloy coatings. It discusses the Sendzimir process and the Cook-Norteman process, which are the two commercial processes that are used for almost all hot-dip galvanized sheet steel in the United States. The article provides a discussion on the aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well as the intergranular corrosion of galvanized steel.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
.... The concentration of acid can vary from 0.5 to 2%, and etching time will vary with the type of coating. Amyl alcohol is a toxic substance; the etchant must be prepared under a hood, and skin contact must be avoided. Profiles of galvanized, galvannealed, and electrogalvanized steel are given in Fig. 29 , 30...
Abstract
This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin, which are present in the microstructure of zinc alloys. The article also provides information on microexamination that helps to determine the dendrite arm spacing, as well as the grain size, grain boundaries, and grain counts.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003761
EISBN: 978-1-62708-177-1
... Abstract This article reviews various phases and constituents found in the microstructures of low-carbon and coated steels. It provides information on the criteria for selecting proper metallographic procedures. Techniques used to prepare metallographic specimens of low-carbon steels and coated...
Abstract
This article reviews various phases and constituents found in the microstructures of low-carbon and coated steels. It provides information on the criteria for selecting proper metallographic procedures. Techniques used to prepare metallographic specimens of low-carbon steels and coated steels, such as sectioning, mounting, grinding, polishing, and etching, are discussed. The article also reviews the simple and proven manual sample preparation techniques of coated steel specimens.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
... coatings. Electrodeposited coatings are also applied to protect substrate metals. Examples of this application include: Tin, as well as chromium, plating of steel strip for food packaging and other container uses Electrogalvanizing, or zinc plating, of steel strip, sheet, stampings, forgings, wire...
Abstract
This article discusses the various factors that affect the corrosion performance of electroplated coatings. It describes the effects of environment and the deposition process on substrate coatings. The article provides a discussion on the electrochemical techniques capable of predicting the corrosion performance of a plated part. It reviews the designs of coating systems for optimal protection of the substrate. The article also discusses controlled weathering tests and accelerated tests used to predict and determine the relative durability of the coating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
... and coil as an alternative to zinc-iron or electrogalvanizing. An advantage of this composition is the formability of the steel after coiling. For components, chromatizing is required; however, best results are achieved on alloys containing 5 to 10% Ni. For alloys in this range of nickel content, corrosion...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003678
EISBN: 978-1-62708-182-5
.... (b) Tri-cation phosphate layer of a no-rinse process. Substrate is electrogalvanized steel. The amorphous layers are commonly used for temporary corrosion protection, with coating weight ranging from 0.1 to 4.0 g/m 2 (0.00033 to 0.013 oz/ft 2 ). These layers are formed by alkali phosphating...
Abstract
Phosphating is used in the metalworking industry to treat substrates like iron, steel, galvanized steel, aluminum, copper, and magnesium and its alloys. This article provides an overview of the types, uses, and theory of phosphate coatings and their formation. It also discusses the composition of phosphating baths, phosphate layers, and their analysis, as well as the process hardware necessary to realize these treatments. A summary of the different types of phosphate layers is tabulated, and the chemical formulas for a number of different phosphate compounds that are theoretically possible in crystalline phosphate layers are illustrated. The article presents four chemically important phosphating steps, namely, cleaning, activation or conditioning, phosphating, and posttreatment plus standard rinsing. It describes the physical and chemical properties by gravimetric analysis, chemical analysis, structure and morphology, thermal analysis, and alkaline resistance.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
..., formability, weldability, and paintability are critical properties for automotive applications of electrogalvanized steel. Metallizing Metallizing, also known as thermal spraying, is used in applications where heavy coatings are specified for corrosion protection. The process is amenable to field...
Abstract
This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical, chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics.
1