1-20 of 224 Search Results for

electrodeposition

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... Abstract Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating...
Image
Published: 01 January 1994
Fig. 6 Cathodic electrodeposition coating system. (1) Load area. (2) Conveyor. (3) Pretreatment. (4) Deionized water rinse. (5) Electrodeposition tank. (6) Recirculated permeate rinse. (7) Fresh permeate rinse. (8) Deionized water rinse. (9) Dryoff. (10) Curing oven. (11) Deionized quench More
Image
Published: 01 January 1994
Fig. 1 Electrodeposition process. (a) Cathodic deposition (resin deposits on the negative electrode). (b) Anodic deposition More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001271
EISBN: 978-1-62708-170-2
... Abstract This article explains the applications of continuous electroplated steel. For each category of application, the type of coating needed and the key attributes of the coating are discussed. The bulk of the article describes electrodeposition technology, including plating line components...
Image
Published: 01 January 2006
Fig. 1 Pitting of electrodeposit on a copper leadframe More
Image
Published: 30 September 2015
Fig. 6 Scanning electron micrograph of electrodeposited iron sheet, indicating dendritic grain structure. Original magnification: 25× More
Image
Published: 01 January 1994
Fig. 1 Examples of containers made from continuous electrodeposited strip steel More
Image
Published: 01 December 2004
Fig. 8 Sn-40Pb coating electrodeposited on a copper substrate and stored 200 days at 170 °C (340 °F). A layer of Cu 3 Sn has formed near the copper, and on top of that a layer of Cu 6 Sn 5 has formed. Attack polished using etchant 10, Table 1 , then exposed to HCl vapor. 500× More
Image
Published: 01 December 2004
Fig. 10 Intermetallic layer of electrolytic tinplate, with electrodeposited tin reflowed, then removed with same solution used in Figure 9 FeSn 2 crystallites have formed at the coating/substrate interface. 5000× More
Image
Published: 31 December 2017
Fig. 8 Scanning electron microscopy images of a chromium electrodeposit on steel with uniform thickness, following the base material morphology. (a) Surface image of a sulfate-catalyst (Sargent bath)-deposited chromium film. Source: Ref 10 , with permission. (b) Focused ion beam cross More
Image
Published: 01 January 2003
Fig. 6 Porosity versus deposit thickness for electrodeposited, unbrightened gold on a copper substrate. Compare with Fig. 7 . More
Image
Published: 01 January 1994
Fig. 3 Scanning electron micrographs of an electrodeposited chromium film. (a) Fracture cross section. (b) Plan view showing the presence of cracks within the coating More
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003833
EISBN: 978-1-62708-183-2
... Abstract This article discusses the corrosion of chromium electrodeposits and the ways for optimizing corrosion resistance. It describes the processing steps and conditions for hard chromium plating. These steps include pretreatment, electroplating, and posttreatment. The article also provides...
Image
Published: 01 January 1994
Fig. 3 Service lives of various zinc coatings according to the weight of the zinc present. Results are for exposure in a very aggressive industrial atmosphere. 1, electrodeposited; 2, electrodeposited (passivated with chromate solution); 3, hot-dip galvanized; 4, sprayed. Source: Ref 16 More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
.... If suitable additives are used, then chromium can be deposited as an amorphous coating with excellent properties ( Ref 19 ). Recently, it has been shown that amorphous coatings containing chromium, iron, and other minor elements (such as phosphorus and carbon) also can be electrodeposited. Corrosion-resistant...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006012
EISBN: 978-1-62708-172-6
... carbon nanotubes, silica, metals/metal oxides, ceramics, clays, buckyballs, graphene, polymers, titanium dioxide, and waxes. These can be produced by a variety of methods, including chemical vapor deposition, plasma arcing, electrodeposition, sol-gel synthesis, and ball milling. The application...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003112
EISBN: 978-1-62708-199-3
... process, Pyron process, atomization of liquid metal, thermal decomposition and the electrodeposition process for carbonyl and electrolytic iron powders. It describes the types of compaction and sintering, explaining their effects of processing with designations. Further, the article deals...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001375
EISBN: 978-1-62708-173-3
... Abstract This article describes low-temperature solid-state welding processes in relation to the interlayer fabrication method, welding method, and welding parameters. The interlayer fabrication method is used to produce vacuum coated interlayers, electrodeposited interlayers, and foil...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004125
EISBN: 978-1-62708-184-9
... of environmental regulations and hazardous materials, nonchromated pretreatments, waterborne technology, high-solids technology, and touch-up paints. The article also deals with the use of electrodeposition coatings, powder coatings, adhesive films, paint application equipment, and non-chromated sealants...