1-20 of 313 Search Results for

electrode kinetics

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003584
EISBN: 978-1-62708-182-5
...Abstract Abstract Corrosion of metallic materials is governed by electrochemical kinetics, so that the general concepts developed for studying electrochemical reaction mechanisms may be applied to corrosion. This article presents the fundamental aspects of electrode kinetics. The processes...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003604
EISBN: 978-1-62708-182-5
...Abstract Abstract Principles of metallic corrosion play a fundamental role in developing industrial processes that employ corrosion for constructive purposes. This article examines the changes in kinetics that occur with differentially small potential changes around the equilibrium electrode...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003592
EISBN: 978-1-62708-182-5
...Abstract Abstract Electrode potential is a key parameter in the thermodynamic and kinetic processes that drive aqueous corrosion. This article discusses the complexities associated with measuring electrode potential and explains where and how to use reference electrodes to improve measurement...
Book Chapter

Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006547
EISBN: 978-1-62708-183-2
... that lists the values based on the electrode reaction. Because overpotential is a kinetic parameter and depends on current density, overpotential values presented are for a specific current density. nonequilibrium electrode potential electrode reaction overpotential OVERPOTENTIAL (η...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003579
EISBN: 978-1-62708-182-5
...Abstract Abstract The electrode potential is one of the most important parameters in the thermodynamics and kinetics of corrosion. This article discusses the fundamentals of electrode potentials and illustrates the thermodynamics of chemical equilibria by using the hydrogen potential scale...
Book Chapter

By Mark C. Williams
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
... the type of fuel that can be used in a fuel cell. The low- temperature fuel cells with aqueous electrolytes are, in most practical applications, restricted to hydrogen as a fuel. In high-temperature fuel cells, CO and even CH 4 can be used because of the inherently rapid electrode kinetics and the lesser...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001260
EISBN: 978-1-62708-170-2
..., and the nickel deposition rate is controlled by either electrode kinetics or by mixed mass transfer and kinetics. Copper plating proceeds with nearly 100% current efficiency, but the nickel plating has a lower current efficiency due to the simultaneous evolution of hydrogen. The electrolyte is often strongly...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... and potential to be out of phase. An analysis of the response yields a wealth of information, which can be used to examine the mechanism and kinetics of the electrode reactions. Although the technique is most important for research purposes rather than corrosion performance tests, it can be used to determine...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003578
EISBN: 978-1-62708-182-5
... Measurements with Reference Electrodes”). However, when dealing with the kinetics of electrochemical reactions (see the article “Kinetics of Aqueous Corrosion” in this Volume), the metal-electrolyte interface represents an energy barrier that must be overcome. Thus, reactions at the interface are often...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003577
EISBN: 978-1-62708-182-5
... that a reaction cannot occur, the reaction will indeed not occur. However, thermodynamics does not provide any information on the rate at which a reaction will occur; that is the area of kinetics. Corrosion in aqueous solution is an electrochemical process where the corroding metal is an electrode in contact...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003715
EISBN: 978-1-62708-182-5
... by diffusion. The potential difference across the electrode/ electrolyte interface: Electrode potentials need to be measured to evaluate the corrosion behavior of a metal (this is true for both the thermodynamics and the kinetics of corrosion). Potential measurements require the use of reference...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003601
EISBN: 978-1-62708-182-5
...Abstract Abstract This article examines constructive corrosion that occurs in power-generating devices, specifically batteries. It discusses the kinetic aspects of constructive corrosion in batteries and provides examples to illustrate how the kinetics of a corrosion process varies among...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003586
EISBN: 978-1-62708-182-5
... on metals. Electrode Reaction Thermodynamics and Kinetics in Corrosion Metallic corrosion is usually an electrochemical process. Electrochemical processes require anodes and cathodes in electrical contact as well as an ionic conduction path through an electrolyte. The electron flow between the anodic...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003595
EISBN: 978-1-62708-182-5
... laminar flow is maintained. Generally, the rotating disk electrode is superior to static systems for study of the kinetics of heterogeneous reactions. For electrolytes in a diffusion controlled process where a stationary condition exists and the process is dependent on mass transfer of solute...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003709
EISBN: 978-1-62708-182-5
... An anion is an ion that has a negative charge. An anion will move toward the anode in an electric field. Anode In an electrochemical cell, the anode is the electrode where oxidation takes place. See also the section “ Cell Types and Conditions for Commercial and Industrial Processes...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... through an arc from an electrode to the workpiece across a gap in a gas, or the electric current can be passed directly through the workpiece as an integral part of the circuit. Processes that use the former approach are called arc welding processes, while those that use the latter approach are called...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... of a laser beam is carried by light, the energy of an e-beam is carried by electrons accelerated by a high-voltage electric field. The mechanism by which heating of the substrate occurs is thus quite different. Because the kinetic energy of an electron directed toward a substrate is nearly totally...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003677
EISBN: 978-1-62708-182-5
..., as indicated by its relatively negative reversible potential on the electromotive force (emf) scale ( E 0 = −1.63 V NHE ). (NHE is normal hydrogen electrode.) As a result of its reactivity, metallic titanium readily oxidizes during exposure to air as well as during exposure to aqueous and nonaqueous...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001339
EISBN: 978-1-62708-173-3
... incorporated into the slag. The need to improve flux formulation to achieve optimal weld metal composition, and ultimately improve the properties of weldments, has led to fundamental studies of weld pyrochemistry. Understanding the thermodynamic and kinetic factors that are prevalent at the electrode...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
.... Thus, the use of most engineering materials relies on the presence of a kinetic surface barrier (passivity) to reduce the oxidation rate to manageable proportions. When passivity is disturbed (e.g., by local strains in the underlying material), the reaction (oxidation) rate of the exposed metal...