Skip Nav Destination
Close Modal
Search Results for
electrode feed unit
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 277 Search Results for
electrode feed unit
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... length is maintained at the set value, despite the reasonable changes that would be expected in the gun-to-work distance during normal operation. This automatic arc regulation is achieved in one of two ways. The most common method is to utilize a constant-speed (but adjustable) electrode feed unit...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005158
EISBN: 978-1-62708-186-3
... principles of wire electrode discharge machining. See text for details. Workpiece Thickness and Machining Speed Wire electrode discharge machining defines machining speed as sectional area of machining per unit time: Machining speed ( mm 2 / min ) = Machining feed...
Abstract
The electrical discharge machining (EDM) process is used for machining dies because of its ability to machining difficult geometries or materials with poor machinability. This article provides a discussion on the fundamentals of electrical discharge erosion and the principles of EDM and orbital-movement EDM. It discusses various aspects of wire EDM in machining dies and provides an overview of the materials used in EDM electrodes. The article concludes with a discussion on electrochemical machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002163
EISBN: 978-1-62708-188-7
... have one feed axis capable of producing constant feed rates between 25 and 0.125 mm/min (1 and 0.005 in./min) as well as a jogging movement. Multiaxis machines are also available; these units allow rotation of the part or allow an array of tubes to be indexed across the part. The use of computer...
Abstract
This article describes the applications, process capabilities, and limitations and advantages of electrostream and capillary drilling. It describes equipment and tooling used for electrostream and capillary drilling. These include electrostream and capillary drilling machines, power supplies, electrolyte system, part holding fixtures, cathode holders, and cathode tubes. Key process parameters for electrostream and capillary drilling are also discussed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005621
EISBN: 978-1-62708-174-0
... operation of the process. Welding procedures emphasize control of parameters such as electrode wire-feed speed (or current), arc voltage, welding travel speed, contact tip-to-workpiece distance, as well as welding current pulse parameters (peak and background current, and peak and background time, Fig...
Abstract
Heat and mass transfer in arc welding is normally studied from the standpoint of the weld pool and heat-affected zone. This article examines the heat and mass transfer from the arc to the base metal during the gas metal arc welding process. It also provides information on the selecting parameters for the development of welding procedures.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... and degassing applications. These units do not need a bottom electrode but do require more sophisticated power supplies than dc plasma torches do in order to limit the torch current and to ensure a quick, uninterrupted current pass through zero. Fig. 2 Configurations of (a) Nontransferred arc plasma...
Abstract
Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold hearth melting, and plasma casting.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... from part to part. Only if this condition exists can the welding truly be automatically controlled. Weld programmers’ programmable logic controllers and robotic controllers can control all the parametric functions for a GTAW application: arc current, voltage, travel speed, electrode feed rate, and gas...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... not be confirmed. Vertical Feeding of Ingots Refractory and reactive metal ingots of high purity, homogeneity, and smooth surface are remelted by vertical feeding ( Fig. 3 ). The molten metal droplets run down the conical, rotating electrode tip, are refined, and then drop into the pool center...
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005719
EISBN: 978-1-62708-171-9
... source of problem is wire slippage in the drive rolls. Slippage can be caused by tension on the wire from drag in the dispensing units of the wire spools, coils, or drums. Slippage can also be caused by wire diameter and stiffness, which impose mechanical loads on the feeding system that interrupt...
Abstract
This article discusses various control processes carried out in powder feeding, thermal spraying, and gas flow of the thermal spray process to standardize the coating quality. Quality of the entire powder feeding process can be achieved by controlling the processing of feeding equipment as well as the characteristics of the powder being fed. Gas flow control can be achieved by using rotameters, critical orifices, and thermal mass flowmeters, whose ability to provide useful information is defined by their resolution, accuracy, linearity, and repeatability. The commercial thermal spray controls discussed here include the open-loop input-based, open-loop output-based, closed-loop input-based, and closed-loop output-based or adaptive controls. The article discusses the common causes and practical solutions for arc starting problems. It also outlines certain important developments in measuring individual and collective particle velocities, temperature, and trajectories as well as other plume characteristics for the plasma spray process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... depends on the flow of shielding gas for proper cooling. Although curved-neck guns are the most common, straight guns are used to a limited extent. A trigger switch on the welding gun is closed to initiate wire feeding, welding current flow, and shielding gas flow. The electrode is delivered from...
Abstract
This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW process are reviewed. The article illustrates the manufacturing process for the electrodes used in FCAW and outlines the classification of carbon and low-alloy steel, stainless steel, and nickel-base electrodes.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... on. A welding procedure should at least include electrode diameter, flux and electrode type, amperes and/or wire feed speed volts, type of current, travel speed and contact tip to work distance (CTWD), see ( Fig. 7 ). This is sometimes referred to as electrical stickout (ESO). Work should be securely...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001485
EISBN: 978-1-62708-173-3
... by amperage signals through solid-state controls. This method controls the electrode feed speed, which maintains the preset amperage. It is run with constant-voltage power sources only. Voltage-Controlled Method A voltage-controlled method maintains arc length by voltage signals through solid-state...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
..., the current and power are both functions of the resistance of the slag pool. Hence, they are functions of the electrode feed rate, the mechanics of electrode melting, and the nature of the electrical and thermal transport at the electrode/slag interface. To control the welding process, a constitutive equation...
Abstract
Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding, wherein an external gas is supplied to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems, quality control, and process applications of ESW and EGW are also discussed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... ), but additional equipment is required, such as a means of mechanically moving the torch in relation to the work and feeding filler electrode into the weld pool. A fully automatic system may require a programmer consisting of a microprocessor to control weld current, travel speed, and filler electrode feed rate...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004041
EISBN: 978-1-62708-185-6
.... In the United States, the large majority of the electrodes are made from graphite. Graphite is used because it is a soft material that can easily be polished with sandpaper. When a better surface finish is required, copper is selected for the electrode material. Copper is the second most common material used...
Abstract
This article reviews the methods of machining and finishing forging dies. It illustrates different stages in die manufacturing. The article provides a brief description on requirements and characteristics of high-speed machining tools, including feed rates, spindle speed, surface cutting speeds, and high acceleration and deceleration capabilities. It discusses electrodischarge machining process and electrochemical machining process. The article concludes with information on die-making methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001337
EISBN: 978-1-62708-173-3
... width. From Eq. 5 , with background current, pulse width, and peak current selected, the average current will be proportional to frequency. Increasing and decreasing pulse frequency in proportion to wire feed speed will balance the current with the burn-off rate of the electrode, maintaining...
Abstract
Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM).
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... Abstract The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process...
Abstract
The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001233
EISBN: 978-1-62708-170-2
...) Deburring and radiusing. (i) Electropolishing The rate of material removal in ECM is governed by Faraday's law, since it is a function of current. The primary variables that affect the current density and the material removal rate are: Voltage Feed rate Electrolyte conductivity...
Abstract
Nontraditional finishing processes include electrochemical machining (ECM), electrodischarge machining (EDM), and laser beam machining. These processes belong to nonabrasive finishing methods where surface generation occurs with an insignificant amount of mechanical interaction between the processing tool and the workpiece surfaces. This article provides information on the equipment used, applications, process capabilities, and limitations of ECM and EDM.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
... by the intense heat of the arc and then removed by the jetlike gas stream issuing from the torch nozzle. The PAC process relies on heat generated from electrical arcing between the torch electrode and the workpiece. It generates very high temperatures (28,000 °C, or 50,000 °F, compared to 3000 °C, or 5500 °F...
Abstract
Electric arc cutting is used on ferrous and nonferrous metals for rough severing, such as removing risers or scrap cutting, as well as for more closely controlled operations. This article describes the operating principles, equipment selection, process variables, and safety measures recommended for plasma arc cutting and air carbon arc cutting. Special applications of electric arc cutting, including shape cutting, gouging, and underwater cutting, are also discussed. The article provides information on other electric arc cutting methods, namely, the exo-process and oxygen arc cutting. It concludes with information on the seldom-used electric arc cutting methods, such as shielded metal arc cutting, gas metal arc cutting, and gas tungsten arc cutting.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001335
EISBN: 978-1-62708-173-3
... and rotates in a helical spiral under the influence of the magnetic field surrounding the arc, can occur. As it rotates, a controlled stream of droplets is transferred from the electrode tube to the weld pool over a relatively wide area. Additional increases in wire feed/current at low voltage shorten the arc...
Abstract
This article provides information on heat and mass transfer from the arc to the base metal in the gas-metal arc welding (GMAW) process. It discusses the development of welding procedures and the general operation of the process. The issues described in this article include the: total heat transferred to the base metal; partitioning of heat transfer between the arc and the molten electrode droplets; transfer modes of the droplets; role of the arc in droplet transfer; and simple model for welding procedure development based on an understanding of heat and mass transfer to the base metal.
1