1-20 of 553 Search Results for

electrical hazards

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002439
EISBN: 978-1-62708-194-8
... Abstract Any threat to personal safety should be regarded as a hazard and treated as such. This article discusses threats from several sources, such as kinematic/mechanical hazards, electrical hazards, energy hazards, human factors/ergonomic hazards, and environmental hazards. It describes...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards. absorptivity chemical hazards conduction-mode welding deep-penetration-mode welding electrical hazards eye hazards...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005756
EISBN: 978-1-62708-171-9
..., inspectors, and visitors at construction sites when hazards from falling or fixed objects or electrical shock are present. Bump caps/skull guards may be issued and worn for protection against scalp lacerations from contact with sharp objects. However, they must not be worn as substitutes for safety caps/hats...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... that is located and designed to ensure viewing safety. (The term qualified person denotes “a person who by reason of training, education, and experience is knowledgeable in the operation to be performed and is competent to judge the hazards involved,” according to Ref 1 .) Electric cables and hoses must...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding. chemical hazards depth of focus depth of penetration diameter electrical hazards focal position gap size...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
...: Electrical shock Fumes and gases Arc radiation Fire and explosion With GTAW, there is a fifth potential hazard. If thoriated (thorium-base) electrodes are to be used, there is a potential for radioactive contamination, and all necessary precautions ( Fig. 17 ) should be strictly taken...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006544
EISBN: 978-1-62708-290-7
... Abstract During metal powder production, powder and/or dust handling, compaction, and part finishing operations, many safety and environmental risks exist. This article is a detailed account of the types of safety hazards that can exist and the issues that occur during metal powder handling...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005759
EISBN: 978-1-62708-171-9
... processing. Because the spray operations are conducted within its confines, all of the energy sources (gas, electricity, and water), feedstock materials, and process effluents (heat, dust, fumes, sound, and ultraviolet light) are present. Proper mitigation of all of these hazards requires careful thought...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... electrical insulation cannot be tolerated in arc welding or cutting, nor can defective or worn hoses be used in oxyfuel gas welding and cutting, brazing, or soldering. Proper training in equipment operation is fundamental to safe operation. Persons must be trained to recognize safety hazards...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005717
EISBN: 978-1-62708-171-9
... to protect the operator from direct, line-of-sight viewing of the arc. Both plasma and electric arcs can pose a hazard from light reflected from parts, the powder stream, water curtains, booth walls, control consoles, and tooling. Plasma and electric arc spray generate the largest amounts of UV and IR...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002436
EISBN: 978-1-62708-194-8
... Abstract Risk and hazard analysis can be effectively used during design reviews to provide valuable feedback to the design to avoid failures. This article discusses the types of risks, namely, real risk, statistical risk, predicted risk, and perceived risk. It describes the principle...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005757
EISBN: 978-1-62708-171-9
... voltage and high currents/improper 2 = Minor injuries (i.e., cuts and bruises, 1 to stop work if unsafe working conditions exist. grounding connections can cause electrical 2 days of downtime) Operations cannot be resumed until the hazard shocks that can be lethal. 3 = Major injuries (i.e., concussion...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... are necessary with HLAW to protect personnel from laser hazards. Applications and Operating Modes Hybrid laser arc welding can be used to weld a wide range of metals, including steel, stainless steel, nickel, titanium, aluminum, copper, and other alloy systems. With the high-productivity advantages...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001397
EISBN: 978-1-62708-173-3
... of wire solder and flux is not recommended because of the rapidity of heating and the potential hazard of electrical shock. The preassembled workpieces are positioned in a grounded jig or clamp, and the movable electrode is brought in contact with the workpiece to complete the circuit. When the power...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006075
EISBN: 978-1-62708-175-7
... Abstract Health and safety are critically important issues, and there are numerous aspects of the production and use of metal powders that may entail exposure to hazardous conditions. This article provides a discussion on the issues associated with the safe production and handling of metal...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006960
EISBN: 978-1-62708-439-0
.... Finally, the facility itself must be considered part of those risk hazards. The facility carries risk with the environment within that facility. This environment includes environmental conditions such as humidity and temperature. Other factors found in a facility are electrical and inert gas safety...
Book Chapter

By Roy E. Beal
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001396
EISBN: 978-1-62708-173-3
... to the lower melting point elements. The most common dip soldering operations use zinc-aluminum and tin-lead solders. The molten bath can be heated by electricity or gas. The bath container is made from ceramic materials or a metal that is nonreactive to the filler metal used for dipping. The dip baths...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005758
EISBN: 978-1-62708-171-9
... spray equipment at consumer sites. The article covers the gas sources (bulk or gaseous), the piping (hard and soft) leading to the gas console or the torch, and the specific safety devices used to help ensure safe operation. It discusses the characteristics and safety hazards of gases such as oxygen...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001381
EISBN: 978-1-62708-173-3
... there is no metal spatter, radiation, fume, or electric hazard involving high voltage, arcs, and sparks. Defects associated with melting-solidification phenomena are not present in FRW, because it is a solid-state process. It is possible to make transition joints of dissimilar metals that are difficult...