Skip Nav Destination
Close Modal
By
Yuan-Shou Shen, Pat Lattari, Jeffrey Gardner, Harold Wiegard
By
Valery Rudnev
By
Wayne K. Daye, Thomas W. Pelletiers, II
By
Rob Goldstein, William Stuehr, Micah Black
By
Joseph T. Menke
Search Results for
electrical contacts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1503
Search Results for electrical contacts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Electrical Contact Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
... Abstract Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts. The article also focuses on brush contact materials and their interdependence factors for sliding contacts. In addition, the article discusses the properties, manufacturing methods, and applications of electrical contact materials, including wrought materials such as copper metals, silver metals, gold metals, precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude process, and coprecipitation.
Book Chapter
Electrical Contact Materials
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001097
EISBN: 978-1-62708-162-7
... Abstract Electrical contacts are metal devices that make and break electrical circuits. This article provides information on materials selection criteria and failure modes of make-break contacts. It describes the property requirements for make-break arcing contacts, namely, electrical...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article provides information on materials selection criteria and failure modes of make-break contacts. It describes the property requirements for make-break arcing contacts, namely, electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties. The article presents a brief note on brush contact materials and their interdependence factors for sliding contacts. It also describes the type of commercial contact materials for electrical contacts, namely, copper metals, silver metals, gold metals, metals of the platinum group, precious metal overlays, tungsten and molybdenum, aluminum, and composite materials. Finally, the article provides information on composite manufacturing methods, and tabulates the physical, and mechanical properties of electrical contact materials, including copper, silver, gold, platinum, palladium, and composites.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006091
EISBN: 978-1-62708-175-7
... Abstract Electrical contacts are made of elemental metals, composites, or alloys that are made by the melt-cast method or manufactured by powder metallurgy (PM) processes. PM facilitates combinations of metals that ordinarily cannot be achieved by alloying. This article describes the processing...
Abstract
Electrical contacts are made of elemental metals, composites, or alloys that are made by the melt-cast method or manufactured by powder metallurgy (PM) processes. PM facilitates combinations of metals that ordinarily cannot be achieved by alloying. This article describes the processing, properties, and performance of electrical contacts based on PM or hybrid composite technologies with refractory metals and compounds. These metals and compounds include tungsten, molybdenum, carbide-based composites, and silver-base composites. The article explains composite manufacturing methods, namely, PM methods, internal oxidation, and hybrid consolidation. The availability of the refractory metals and compounds in various product forms are also reviewed.
Image
Test data from evaluations of electrical contact materials. (a) Contact res...
Available to PurchasePublished: 30 September 2015
Fig. 3 Test data from evaluations of electrical contact materials. (a) Contact resistance vs. contact force. (b) Contact welding characteristics. (c–e) Contact erosion characteristics in short-circuit tests
More
Image
Probes making electrical contact with a sample. Also note the gas injection...
Available to PurchasePublished: 15 December 2019
Fig. 19 Probes making electrical contact with a sample. Also note the gas injection system nozzle for gas delivery to the same area. Courtesy of H. Schulz of Zeiss Microscopy GmbH and A. Rummel of Kleindiek, GmbH
More
Image
Pin-on-disk tribometer setup for electrical contact resistance measurement ...
Available to PurchasePublished: 01 June 2012
Fig. 11 Pin-on-disk tribometer setup for electrical contact resistance measurement showing the ball holder that is electrically isolated from the system
More
Image
Coefficient of friction (COF) and electrical contact resistance (ECR) plott...
Available to PurchasePublished: 01 June 2012
Fig. 12 Coefficient of friction (COF) and electrical contact resistance (ECR) plotted as a function of time for a 100Cr6 steel ball in contact with a polypropylene coating
More
Book Chapter
Electrical Conductivity of Metals and Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005445
EISBN: 978-1-62708-196-2
... steels and alloys; thermostat metals; electrical contact materials; and magnetically soft materials. electrical conductivity electrical resistivity aluminum aluminum alloys copper copper alloys electrical heating alloys relay steel thermostat metal electrical contact materials...
Abstract
This article contains a table that lists the electrical conductivity and resistivity of selected metals, alloys, and materials at ambient temperature. These include aluminum and aluminum alloys; copper and copper alloys; electrical heating alloys; instrument and control alloys; relay steels and alloys; thermostat metals; electrical contact materials; and magnetically soft materials.
Book Chapter
Systematic Analysis of Induction Coil Failures and Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
... flux concentrators on coil life. It also reviews the importance of having appropriate and reliable electrical contacts. camshafts clamshell inductors copper crack propagation crankshafts current density electrical contacts failure mode frequency induction coils induction hardening...
Abstract
This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly inductors, and inductors for heating internal surfaces. It discusses the current density distribution and the skin effect, the proximity effect, and crack-propagation specifics. The article also describes selected properties of copper alloys, the electromagnetic edge effect of coil copper turn, and the effect of magnetic flux concentrators on coil life. It also reviews the importance of having appropriate and reliable electrical contacts.
Book Chapter
Copper P/M Products
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials. copper alloy powders copper powders...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005668
EISBN: 978-1-62708-198-6
.... The article illustrates a practical tribocorrosion setup that allows a user to perform wear tests in corrosive environments under well-defined electrochemical conditions and at controlled temperature. It explains the effect of changes in electrical contact resistance on tribological mode. The article...
Abstract
This article provides an overview of the fundamentals of tribology. It describes the advantages, disadvantages, and applications of the pin-on-disk method, which is the most commonly used configuration for testing biomaterials and for the reproducible measurement of friction and wear. The article illustrates a practical tribocorrosion setup that allows a user to perform wear tests in corrosive environments under well-defined electrochemical conditions and at controlled temperature. It explains the effect of changes in electrical contact resistance on tribological mode. The article discusses various in vivo environmental conditions in tribological tests. Some typical examples of biomaterials testing are also provided.
Image
Published: 31 October 2011
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005909
EISBN: 978-1-62708-167-2
... contacts fiber optic sensors induction furnaces induction melting insulation resistance refractory lining refractory materials wear monitoring MELTING WITH INDUCTION crucible furnaces (ICFs) is a well-established and reliable technology. The mechanical and electrical construction, power supply...
Abstract
Melting with induction crucible furnaces (ICFs) is a well-established and reliable technology, and their maintenance must be performed at regularly scheduled intervals to ensure safe operation. This article discusses monitoring of the refractory lining, and presents an overview of the various wear-indication methods, namely, manual checks, ground leakage indication, evaluation of electrical values of the furnace, and temperature measurement. It also presents the working principle, physical restrictions, limitations, and remarks on these methods.
Image
Comparison of erosion and welding characteristics of selected electrical co...
Available to Purchase
in Electrical Contact Materials
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 14 Comparison of erosion and welding characteristics of selected electrical contact materials. All contacts were butting, with a closing force of 980 mN (0.22 lbf), an opening force of 735 mN (0.165 lbf) and closing and opening speeds of 38 mm/s (1 1 2 in./s). Contacts operated
More
Image
Fretting of cobalt-gold-plated copper flats in contact with solid gold in a...
Available to PurchasePublished: 01 January 2003
Fig. 7 Fretting of cobalt-gold-plated copper flats in contact with solid gold in an electrical contact. (a) After 1000 cycles. (b) After 10 4 cycles. (c) After 10 5 cycles. (d) After 10 6 cycles. Source: Ref 8
More
Book Chapter
Precious Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003150
EISBN: 978-1-62708-199-3
... circuit board assemblies; silver, gold, and platinum-group metals for electrical contacts; the use of organometallic compounds containing platinum for cancer chemotherapy drugs; and many other applications. The Precious Metals Industry Resources and Consumption Silver Despite being...
Abstract
Precious metals include gold, silver, and six platinum-group metals, namely, platinum, palladium, ruthenium, rhodium, osmium, and iridium. This article focuses on the consumption, trade practices, properties, product forms, and applications of these metals and their alloys.
Book Chapter
Pressing and Sintering of Copper Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006105
EISBN: 978-1-62708-175-7
... copper powders electrical contacts friction materials lubricant powder properties pressing sintering structural defects COPPER POWDERS are selected for powder metallurgy (PM) applications that require high thermal or electrical conductivity, good corrosion resistance, moderate strength, high...
Abstract
Development of the properties of copper powder metallurgy parts is affected by pressing and sintering processes used in the production of components, such as contacts, carbon brushes, and friction materials. This article briefly describes the powder properties of copper and discusses the roles of lubricant and compaction dies in pressing of copper powders. It explains the structural defects that originate during the compaction process of PM parts. The article also provides information on sintering, re-pressing, and re-sintering of copper PM parts.
Book Chapter
Design and Fabrication of Inductors for Induction Heat Treating
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005839
EISBN: 978-1-62708-167-2
... a part and presenting it to the inductor during the initial inductor design. The article provides information on coil leads/busswork and contacts that mechanically and electrically connect the induction coil head to the power supply. It concludes with a discussion on flux and oxide removal, leak and flow...
Abstract
This article provides information on single-shot and scanning, the two types of induction heat treating processes that are based on whether the induction coil is moving relative to the part during the heating process. It describes the effect of the frequency of induction heating current on the induction coil and process design, and the control of heating in different areas of the inductor part. The article reviews three main tools for adjustment of coil design and fabrication: coupling gap, coil copper profile, and magnetic flux controllers. It examines the method of holding a part and presenting it to the inductor during the initial inductor design. The article provides information on coil leads/busswork and contacts that mechanically and electrically connect the induction coil head to the power supply. It concludes with a discussion on flux and oxide removal, leak and flow checking, silver plating, and electrical parameter measurement.
Image
Photos of (a) an anodizing line and (b) an active anodizing process. The fl...
Available to PurchasePublished: 30 November 2018
Fig. 16 Photos of (a) an anodizing line and (b) an active anodizing process. The flight bar, to which the racks, loaded with components for anodizing, are attached, makes electrical contact across the tank, which is filled with the electrolyte that is being vigorously agitated to help keep
More
Book Chapter
Corrosion of Electronic Equipment in Military Environments
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004129
EISBN: 978-1-62708-184-9
... cracking were highlighted as specific corrosion problems associated with these components. In 1975, the Tank and Automotive Command highlighted the corrosion on components such as relays, starters, and motors ( Ref 14 ). In 1979, a report was written on electrical contacts in submarine-based electronic...
Abstract
This article provides a historical review of corrosion problems in military electronic equipment. It describes the importance of design for corrosion control of an electronic black box used to contain electrical equipment that provides various functions. The article illustrates corrosion control aspects, such as the position of printed circuit boards (PCBs) and proper location of connectors for insertion of the PCBs. It discusses various materials and alloys considered for connectors, PCB contacts, and circuits. The article concludes with a discussion on the effects of contaminants on the electronic black box.
1