Skip Nav Destination
Close Modal
By
Curtis D. Mowry, Russell L. Jarek, Jessica Román-Kustas, Amber C. Telles, Adam S. Pimentel
Search Results for
electric quadrupole moment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-14 of 14
Search Results for electric quadrupole moment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
... Abstract Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles...
Abstract
Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles of nuclear magnetic resonance with emphasis on nuclei properties, the basic equation of nuclear magnetic resonance, the classical theory of nuclear magnetization, line broadening, and measurement sensitivity. It describes the pulse-echo method for observing NMR. The article provides useful information on ferromagnetic nuclear resonance and nuclear quadrupole resonance, and illustrates the experimental arrangement of NMR with a block diagram. It also presents several application examples.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006646
EISBN: 978-1-62708-213-6
... approaching each other. Quadrupole Interaction The energy levels of the ground and excited nuclear states can be split by the hyperfine interaction between an electric-field gradient at the nuclear site and the electric quadrupole moment, Q , of the nucleus. This quadrupole interaction offers...
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence using the recoil-free transitions of a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME, covering recoil-free fraction, absorption, selection rules, gamma-ray polarization, isomer shift, quadrupole interaction, and magnetic interaction. Experimental arrangement for obtaining ME spectra is described and several examples of the applications of ME are presented. The article contains tables listing some properties of Mossbauer transitions and principal methods used for producing ME sources.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001753
EISBN: 978-1-62708-178-8
... | < L < | I e + I g |. The number 2 L defines the multipolarity of the transition, that is, L = 1 (dipole), L = 2 (quadrupole), L = 3 (octapole), and so on. For each multipolarity L , there are two types of nuclear transitions—electric EL and magnetic ML. If P e and P g...
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence based on recoil-free transitions in a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME and related concepts such as recoil-free fraction, absorption cross section, gamma-ray polarization, isomer shift, and quadrupole and magnetic interactions. It illustrates the experimental arrangement for obtaining ME spectra and presents several application examples.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006663
EISBN: 978-1-62708-213-6
... technologies for gas mass spectrometry, namely quadrupole mass filters, magnetic sector mass filters, and time-of-flight mass analyzers are covered. Common factors to consider in choosing an analyzer for static or continuous gas measurement are also described. In addition, the article presents some examples...
Abstract
Gas analysis by mass spectrometry, or gas mass spectrometry, is a general technique using a family of instrumentation that creates a charged ion from a gas phase chemical species and measures the mass-to-charge ratio. This article covers gas analysis applications that do not use chromatographic separation to physically isolate components of the sample prior to analysis. It is intended to provide an understanding of gas analysis instrumentation and terminology that will help make informed decisions in choosing an instrument and methodology appropriate for the data needed. Mass-analyzer technologies for gas mass spectrometry, namely quadrupole mass filters, magnetic sector mass filters, and time-of-flight mass analyzers are covered. Common factors to consider in choosing an analyzer for static or continuous gas measurement are also described. In addition, the article presents some examples of applications of gas mass spectrometry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... are those with only dipole moments, because their interaction with surrounding charges is simplest. Quadrupolar nuclei, with I > 1/2 and thus possessing an electric quadrupole moment, interact strongly with nearby electric field gradients, significantly complicating their resonance frequency...
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006442
EISBN: 978-1-62708-190-0
... moments on neighboring atoms. However, the phenomena can also find application in ferrimagnetic materials, which consist of populations of atoms with unequal and opposing spin moments introducing a net spontaneous magnetization. Ferrimagnetic materials include ferrites and magnetic garnets ( Ref 7...
Abstract
This article discusses the principles and limitations of micromagnetic techniques, namely, magnetic Barkhausen noise (MBN) and magnetoacoustic emission (MAE). It also discusses various factors limiting the establishment of acceptance criteria for test components as they pertain to the successful application of MBN measurement and signal interpretation. The article provides an overview of basic magnetic phenomena and dynamics in ferromagnetic materials that underlie the origin of MBN emissions. It describes the changes in the domain structure of the ferromagnetic material under an applied external field. The relationship between uniaxial stress and angular-dependent strain is also discussed. The influence of stress on domain walls, and therefore, the generation of Barkhausen noise are described. The article also describes the directional and angular MBN measurements and provides information on detection, angular dependence, and advanced analysis methods of MBN emissions.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006683
EISBN: 978-1-62708-213-6
... of time-of-flight SIMS are covered. Instrumental features required for secondary ion imaging are presented and the differences between quadrupole and high-resolution magnetic mass filters are described. The article also reviews the optimum method for analysis of nonmetallic samples and high detection...
Abstract
This article focuses on the principles and applications of high-sputter-rate dynamic secondary ion mass spectroscopy (SIMS) for depth profiling and bulk impurity analysis. It begins with an overview of various factors pertinent to sputtering. This is followed by a discussion on the effects of ion implantation and electronic excitation on the charge of the sputtered species. The design and operation of the various instrumental components of SIMS is then reviewed. Details on a depth-profiling analysis of SIMS, the quantitative analysis of SIMS data, and the static mode of operation of time-of-flight SIMS are covered. Instrumental features required for secondary ion imaging are presented and the differences between quadrupole and high-resolution magnetic mass filters are described. The article also reviews the optimum method for analysis of nonmetallic samples and high detection sensitivity of SIMS. It ends with a discussion on a variety of examples of SIMS applications.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001774
EISBN: 978-1-62708-178-8
...-focusing mass spectrometer or an energy-filtered quadrupole mass spectrometer. The principles of SIMS are represented schematically in Fig. 1 . Fig. 1 Schematic representative of the principles of SIMS. This method can be used to acquire a variety of information about the surface, near...
Abstract
In secondary ion mass spectroscopy (SIMS), an energetic beam of focused ions is directed at the sample surface in a high or ultrahigh vacuum (UHV) environment. The transfer of momentum from the impinging primary ions to the sample surface causes sputtering of surface atoms and molecules. This article focuses on the principles and applications of high sputter rate dynamic SIMS for depth profiling and bulk impurity analysis. It provides information on broad-beam instruments, ion microprobes, and ion microscopes, detailing their system components with illustrations. The article graphically illustrates the SIMS spectra and depth profiles of various materials. The quantitative analysis of ion-implantation profiles, instrumental features required for secondary ion imaging, the analysis of nonmetallic samples, detection sensitivity, and the applications of SIMS are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
... constantly about its axis with a certain angular momentum. Associated with the intrinsic spin is a magnetic moment whose value is termed the Bohr magneton (β). If an external magnetic field is impressed on the system, the electron aligns itself with the direction of this field and precesses about this axis...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... GW for excited-state properties (band gaps, band offsets, etc.); optical properties totally from first principles with full exponential form for matrix elements; and magnetic and electric quadrupole hyperfine interactions. Typical outputs are band structure, wave function, Fermi surface, density...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001110
EISBN: 978-1-62708-162-7
... carrying localized magnetic moments (for example, manganese, iron, or chromium) ( Ref 34 ). Several large billets have been fabricated to investigate the benefits (and limitations) of manganese additions to the copper matrix ( Ref 35 , 36 ). The evaluation has included mechanical, electrical, thermal...
Abstract
Niobium-titanium alloys (NbTi) became the superconductors of choice in the early 1960s, providing a viable alternative to the A-15 compounds and less ductile alloys of niobium-zirconium. This can be attributed to the relative ease of fabrication, better electrical properties, and greater compatibility with copper stabilizing materials. This article discusses the ramifications of design requirements, selection criteria and processing methods of superconducting fibers and matrix materials. It provides information on the various steps involved in the fabrication of superconducting composites, including assembly, welding, isostatic compaction, extrusion, wire drawing, twisting, and final sizing. The article also provides a detailed account of the properties and applications of NbTi superconducting composites.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0