Skip Nav Destination
Close Modal
Search Results for
electric arc welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 667 Search Results for
electric arc welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005565
EISBN: 978-1-62708-174-0
... are discussed along with suggested criteria for assuring that a power source selection can safely deliver the desired output and yield long service life when properly used. Arc welding consists of a number of distinct processes that require specific types of electrical power (amps × volts) for the welding...
Abstract
This article describes the characteristics and technology of power sources for major arc welding methods along with the suggested criteria for assuring that a power source selection can safely deliver the desired output and yield long service life. Power sources with single-phase AC input voltage, three-phase input machines, inverter-based power sources, short arc gas metal arc welding power sources, and multiple arc power sources are discussed. The article also presents the factors to be considered when selecting a power source.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005570
EISBN: 978-1-62708-174-0
... of various electric arc welding processes. The SMAW Process The important features of the SMAW process are shown in Fig. 1 . The arc is initiated by momentarily touching or “scratching” the electrode on the base metal. The resulting arc melts both the base metal and the tip of the welding electrode...
Abstract
This article describes the process, advantages, limitations, applications, and equipment used for shielded metal arc welding (SMAW). It provides information on the types of electrodes, weld schedules, and welding procedures. The article explains the electrodes used in the SMAW process that have different compositions of core wire and a variety of flux-covering types and weights. It includes information on gravity and firecracker welding and discusses dry and wet types of underwater welding. Finally, the article reviews the safety considerations to be followed during SMAW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... Abstract The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005580
EISBN: 978-1-62708-174-0
..., such as soldering, brazing, or adhesive bonding, in which the mechanical and physical properties of the base materials cannot be duplicated at the joint. In arc welding, the intense heat needed to melt metal is produced by an electric arc. The arc is formed between the work to be welded and an electrode...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006561
EISBN: 978-1-62708-210-5
... oil in milling, sawing, and drilling. Joining Gas or electric-arc welding can be applied. For gas welding, an oxyhydrogen flame is preferred. Inert-gas shielded-metallic arc welding is preferred, using either a non-consumable tungsten electrode or a consumable electrode. The use of flux-coated...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... bonding arc welding brazing compressed gas handling cutting electric shock electrical safety electron-beam welding explosion welding eye protection face protection friction welding high-frequency welding laser-beam welding oxyfuel gas welding protective clothing resistance welding safety...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001353
EISBN: 978-1-62708-173-3
... circuit diagram Equipment The welding machine, or power source, is the crux of the SMAW process. Its primary purpose is to provide electrical power of the proper current and voltage to maintain a controllable and stable welding arc. Its output characteristics must be of the constant current (CC...
Abstract
Shielded metal arc welding (SMAW), commonly called stick or covered electrode welding, is a manual welding process whereby an arc is generated between a flux-covered consumable electrode and a workpiece. This article discusses the advantages and limitations and applications of the SMAW process and describes the equipment used. It provides information on various coated electrodes used in the SMAW process, including mild and low-alloy steel-covered electrodes, stainless steel covered electrodes, and nickel and copper alloys covered electrodes. It reviews weld schedules and procedures, as well as the variations of the SMAW process. The article concludes with information on the special applications of the SMAW process and safety considerations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and explosion. adhesive bonding arc welding brazing compressed gas cutting electrical safety electromagnetic radiation electron beam welding explosion prevention explosion protection explosion welding fire prevention fire protection friction welding fumes gas high-frequency welding laser...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... Abstract Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... controls are discussed. arc stability bead shape effects electrode feed unit gas metal arc welding gun manipulation power source safety considerations shielding gas supply weld penetration weld quality welding electrodes welding gun GAS METAL ARC WELDING (GMAW) employs an electric arc...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... Abstract Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... Abstract This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... atm atmospheres (pressure) AWS American Welding Society bal balance bcc body-centered cubic bct body-centered tetragonal C cementite; coulomb C heat capacity CAC carbon arc cutting CAC-A air carbon arc cutting CAD/CAM computer-aided design/computer-aided...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... to delve deeper. Sources for polymer AM are not discussed, although the section on lasers is applicable to a number of polymer processes. Also included are brief discussions of the utility of the three main energy sources and alternative energy sources for solid-state welding. Arcs The electric arc...