Skip Nav Destination
Close Modal
Search Results for
elastic moduli
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 233
Search Results for elastic moduli
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Properties of Pure Metals
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 120 Temperature dependence of the Poisson's ratio and the elastic moduli of tungsten. Poisson's ratio and elastic moduli calculated from single-crystal elastic constants ( v c , E c , G c , and K c ) and from polycrystalline tungsten ( v p , E p , G p , and K p ). Sources
More
Image
Published: 01 January 2000
Image
Published: 01 November 1995
Image
in Laser-Ultrasonics—Principles and Industrial Applications
> Nondestructive Evaluation of Materials
Published: 01 August 2018
Fig. 20 Thickness measurement, density, and elastic moduli determination by laser ultrasonics of a thermal spray WC-Co coating. (a) Illustration of the fitting to the dispersion curve. (b) Comparison of the thickness measured by laser ultrasonics with actual thickness
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002418
EISBN: 978-1-62708-193-1
... Abstract The design of structural components with nominally brittle materials is largely determined by their elastic moduli, density, and tensile strength. This article discusses some of the factors involved in the design and reliability through considerations of toughness and ductility...
Abstract
The design of structural components with nominally brittle materials is largely determined by their elastic moduli, density, and tensile strength. This article discusses some of the factors involved in the design and reliability through considerations of toughness and ductility of nominally brittle materials. It describes toughening by various bridging mechanisms, as well as process zone effects and their interaction with the bridging rupture zone. The article explains the phenomena that give rise to exceptional toughness and notch-insensitive mechanical behavior. It provides a schematic illustration of a basic cell model to characterize the inelastic strains that occur in ceramic-matrix composites and their dependence on the interface friction.
Image
Published: 01 June 2012
Image
Published: 01 December 2009
Fig. 9 Core structures of 〈 110 〉 { 111 } edge and screw dislocations in Ni 3 Al and a comparison with solutions from the Peierls model (courtesy of Professor Gunther Schoeck). Both calculations used the same input of generalized stacking fault energy, γ, and elastic moduli
More
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003377
EISBN: 978-1-62708-195-5
... to the fibers, as well as various Poisson's ratios. This can be done in terms of simple analytical expressions. Elastic properties of homogeneous materials are defined by relations between homogeneous (constant) stress and strain. Because of the various symmetries, there are 21 independent elastic moduli...
Abstract
A unidirectional fiber composite (UDC) consists of aligned continuous fibers that are embedded in a matrix. This article describes a variety of analytical methods that are used to determine the various physical properties of the UDC. These properties include elasticity, thermal expansion coefficients, moisture swelling coefficients, static and dynamic viscoelastic properties, conductivity, and moisture diffusivity.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003255
EISBN: 978-1-62708-176-4
...) bonds. Primary bonds are usually more than an order of magnitude stronger than secondary bonds. As a result, ceramics and glasses , which have strong ionic-covalent chemical bonds, are very strong and stiff (i.e., they have large elastic moduli). They are also resistant to high temperatures...
Abstract
This article reviews the fundamental relationships between microstructure and mechanical properties for major classes of nonmetallic engineering materials: metals, ceramics and glasses, intermetallic compounds, polymers, and composites. It details the structures of inorganic crystalline solids, inorganic noncrystalline solids, and polymers. The article describes the various strengthening mechanisms of crystalline solids, namely, work hardening, solid-solution hardening, particle/precipitation hardening, and grain size hardening. Deformation and strengthening of composite materials, polymers, and glasses are reviewed. The article concludes with information on the two important aspects of the mechanical behavior of any class of engineering material: fatigue response and fracture resistance.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
... properties compressive properties creep properties creep-rupture properties elastic limits elastic moduli fabrication fatigue properties fracture properties materials selection proportional limits sample testing shear properties stress-strain curves tensile properties test specimen design...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
... glasses also have relatively high Poisson's ratios of 0.28. Because glasses are isotropic, the shear and bulk moduli can be calculated from the usual formulas. Silica-free glass compositions, such as the phosphates, have weak bonding between chains, which leads to lower values of elastic modulus...
Abstract
This article describes the chemical composition, physical properties, thermal properties, mechanical properties, electrical properties, optical properties, magnetic properties, and chemical properties of glasses, glass-matrix composites, and glass-ceramics.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
.... This is followed by a discussion of the kinematic framework needed to splice the elastic and plastic responses into a compatible motion. The elastic response follows a linear relation (Hooke's law): (Eq 1) τ = c e where c the tensor containing elastic moduli for the appropriate crystal symmetry...
Abstract
This article provides an explanation on how crystal plasticity is implemented within finite element formulations by the use of physical length scales: crystal scale and continuum scale. It provides theoretical formulations for kinematic framework for deforming crystals and polycrystals, elastic and plastic behaviors of single crystals, refinements to the single-crystal constitutive, and crystal-scale finite-element. The article also presents examples that illustrate the capabilities of the formulations at the length scales.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... class of material occupies a characteristic part of the chart. The log scales allow the longitudinal elastic wave velocity v = ( E /ρ) 1/2 to be plotted as a set of parallel contours. All this is simple enough—just a helpful way of plotting data. However, by choosing the axes and scales...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003321
EISBN: 978-1-62708-176-4
... methods, Young's modulus, sheer modulus, and Poison's ratio can all be computed from the resonant frequencies of prismatic bar, rods, or slabs. Dynamic methods of measuring elastic moduli are related to adiabatic conditions; whereas, static methods are isothermal. For ceramic materials ( Ref 3...
Abstract
This article describes the tests for the common types of fabricated components and modeling of metal deformation. It provides an overview of component testing and briefly reviews the relationship of mechanical properties in the process of mechanical design for static loads, cyclic loads, dynamic loads, and high-temperature materials. The article describes the general properties related to monotonic stress-strain behavior of steels. It also discusses materials properties and operating stresses as well as other factors, such as part shape and environmental effects, which play significant roles in the design process of components.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... more closely matches cortical bones. Stress shielding occurs when there is mismatch between the moduli of the implant and adjacent hard tissue. Relative motion occurs at the biomaterial-tissue interface as a result of a difference in the elastic moduli, and serious deterioration of the biomaterial...
Abstract
Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its alloys and presents a list of titanium-base biomaterials. Titanium components are produced in wrought, cast, and powder metallurgy (PM) form. The article describes forging, casting, and heat treating of titanium alloys for producing titanium components. Typical mechanical properties of titanium biomedical implant alloys are listed in a tabular form. The article presents an overview of the surface-modification methods for titanium and its alloys implants. It concludes with a section on biocompatibility and in vivo corrosion of titanium alloys.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003383
EISBN: 978-1-62708-195-5
... dissipated divided by the total energy stored: (Eq 3) Ψ ov = Σ Δ Z Σ Z = ψ L Z L + ψ T Z T + ψ LT Z LT Z L + Z T + Z LT If the elastic moduli and damping coefficients are known for the unidirectional material, it is possible...
Abstract
Damping is the energy dissipation properties of a material or system under cyclic stress. The vibrational and damping characteristics of composites are important in many applications, including ground-based and airborne vehicles, space structures, and sporting goods. This article describes the damping characteristics of unidirectional composites, when they are subjected to longitudinal shear, longitudinal tension/compression, and transverse tension/compression. It presents equations that govern the overall damping capacity of beams that are cut from laminated plates. The article discusses the effect of temperature on damping and provides information on the relationship between damping and strength.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003399
EISBN: 978-1-62708-195-5
... with experimental data. The Hashin Shtrikman bounds for the elastic moduli ( Ref 40 ) are too wide apart for making an adequate estimate. Rather, Mura's formulation ( Ref 41 ), although developed for spherical particles, appears to match the unit cylinder FEM solution reasonably well up to a fiber volume fraction...
Abstract
The goal of micromechanics and analysis is to use the predictive methodology to develop tailored composites and also to make accurate predictions of their performance in service. This article reviews results derived from micromechanics analyses, based on finite-element method of unidirectional fiber reinforced metal matrix composites (MMCs). It discusses the elastic deformation and elastic-plastic deformation analysis of discontinuously reinforced MMCs. The article provides an overview of analysis of strength, fatigue, and fracture toughness for macromechanics fiber-reinforced and discontinuous reinforced composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003025
EISBN: 978-1-62708-200-6
... ratios that are twice those of steel and cast aluminum alloys. Range of mechanical properties for common engineering materials Table 3 Range of mechanical properties for common engineering materials Material Elastic modulus Tensile strength Maximum strength/density Elongation at break...
Abstract
Mechanical properties are often the most important properties in the design and selection of engineering plastics. Temperature, molecular structure, crystallinity, viscoelasticity, and effects of environment, fillers and reinforcements are considered as the basic factors affecting the mechanical properties of engineering plastics. The testing methods for determining mechanical properties, including stress-strain test, modulus-directed tensile test, strength test, strength-directed tensile test, impact test, and dynamic mechanical test are discussed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003143
EISBN: 978-1-62708-199-3
... chemical composition corrosion gas turbine engines mechanical properties prostheses titanium titanium alloys UNS number Properties PROPERTIES are functions of composition and processing. Typically, tensile elastic moduli lie in the range from 100 to 120 GPa (14.7 to 17 × 10 6 psi...
Abstract
This article is a comprehensive collection of properties, compositions, and applications of standard grades of titanium and selected titanium alloys. It provides data regarding the common names, Unified Number System numbers, composition limits, typical uses with service temperatures, precautions in use, and general corrosion behavior of each. The applications of titanium alloys include aerospace, gas turbine engines and prostheses. Further, the article graphically presents a comparative study of fatigue, creep and tensile properties of various titanium alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
..., elastic moduli, wear or fatigue properties, degradation resistance, or the ability to self-repair, and the local biological response does not reproduce that of the implant site. Clinical Issues In spite of these limitations, implantable devices are used and are on the market. The implication...
Abstract
This article provides a summary of the biocompatibility or biological response of metals, ceramics, and polymers used in medical implants, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable polymers.
1