Skip Nav Destination
Close Modal
Search Results for
elastic limits
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1302
Search Results for elastic limits
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Thermophysical Properties of Liquids and Solidification Microstructure Characteristics—Benchmark Data Generated in Microgravity
> Metals Process Simulation
Published: 01 November 2010
Fig. 11 (a) Elastic limit and strength of bulk metallic glasses (BMGs) compared to other materials. (b) Examples of shapes obtained for the BMG Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 ( Ref 25 ). (c) Vertu cell phone with subframe and battery case made of thin BMG sheets with extremely high
More
Image
Published: 01 January 2000
Fig. 2 Stress-strain behavior in the region of the elastic limit. (a) Definition of σ and ε in terms of initial test piece length, L , and cross-sectional area, A 0 , before application of a tensile force, F . (b) Stress-strain curve for small strains near the elastic limit (EL)
More
Image
Published: 01 January 1997
Fig. 8 A chart of Young's modulus, E , plotted against the elastic limit, σ f . The diagonal line shows M 1 .
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003268
EISBN: 978-1-62708-176-4
... specifies a bend test to determine the modulus of elasticity in bending. Japanese Industrial Standard JIS 3130 specifies two tests to determine the elastic limit of spring plate or strip: the repeated deflection spring test and the moment type spring test. bend testing ductility strength specimen...
Abstract
Bend tests are conducted to determine the ductility or strength of a material. This article discusses the different bend tests with emphasis on test methods, apparatuses, procedures, specimen preparation, and interpretation and reporting of results. The types of bend tests discussed are bending ductility tests, bending strength tests (ASTM E 855), bend tests as per EN 12384 and JIS 3130, and computer-aided bending tests. The three standard bending strength tests are the cantilever beam bend test, the three-point bend test, and the four-point bend test. European Standard EN 12384 specifies a bend test to determine the modulus of elasticity in bending. Japanese Industrial Standard JIS 3130 specifies two tests to determine the elastic limit of spring plate or strip: the repeated deflection spring test and the moment type spring test.
Image
Published: 01 January 2000
Fig. 5 Comparison of stress-strain curves for high- and low-toughness steels. Cross-hatched regions in this curve represent the modulus of resilience ( U R ) of the two materials. The U R is determined by measuring the area under the stress-strain curve up to the elastic limit
More
Image
Published: 01 January 2000
Fig. 2 Typical tension stress-strain curve for ductile metal indicating yielding criteria. Point A, elastic limit; point A′, proportional limits; point B, yield strength or offset (0 to C) yield strength; 0, intersection of the stress-strain curve with the strain axis
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003264
EISBN: 978-1-62708-176-4
... of a material. These mechanical properties determined from tension tests include, but are not limited to, the following: Elastic deformation properties, such as the modulus of elasticity (Young's modulus) and Poisson's ratio Yield strength and ultimate tensile strength Ductility properties...
Abstract
THE TENSION TEST is one of the most commonly used tests for evaluating materials. The material characteristics obtained from tension tests are used for quality control in production, for ranking performance of structural materials, for evaluation of alloys, and for dealing with the static-strength requirements of design. This article describes the stress-strain behavior during a tension test and provides the definition of terms such as stress, force, strain, and elongation. It explains the tensile properties obtained from the test results: the tensile strength and yield strength, which includes offset yield strength, extension-under-load yield strength, and upper yield strength. The article concludes with a description of the general procedures for conducting the tension test based on ASTM standards and the variability of tensile properties.
Image
Published: 09 June 2014
Fig. 11 Full-float torsional fatigue of 1038 steel with ultimate torsion strength of 1359 MPa (1214–1566) and torsional yield strength (by Johnson elastic limit method) of 710 MPa (676–800). Effective case depth was 14% (11–28), with total case depth of 25% (16–33) and core hardness of 9 HRC
More
Image
Published: 09 June 2014
Fig. 12 Full-float torsional fatigue of 1541 steel with ultimate torsion strength of 1497 MPa (1207–1862) and torsional yield strength (by Johnson elastic limit method) of 966 MPa (710–1269). Effective case depth was 22% (15–33), with total case depth of 33% (17–50) and core hardness of 19 HRC
More
Image
Published: 01 December 1998
yield stress. This alloy has adequate resistance to stress relaxation at temperatures up to 120 °C (250 °F), provided the initial stress is below the elastic limit.
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005137
EISBN: 978-1-62708-186-3
... are the composition and condition of the work metal, wall thickness, type of tubing (seamless or welded), and type and extent of distortion. Greater force and more rugged equipment are required for straightening tubes with thick walls and high elastic limit. Wall Thickness The amount of distortion that occurs...
Abstract
Tubing of any cross-sectional shape can be straightened by using various equipment and techniques. This article provides a discussion on principal factors that influence the procedures and tooling of tube straightening. It describes the tooling and application of different types of tube straightening techniques, namely, press straightening, parallel-roll straightening, two-roll rotary straightening, multiple-roll rotary straightening, and ovalizing in rotary straighteners.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003261
EISBN: 978-1-62708-176-4
... materials, there is a gradual transition from elastic to plastic behavior, and the point at which plastic deformation begins is difficult to define with precision. In tests of materials under uniaxial loading, three criteria for the initiation of yielding have been used: the elastic limit, the proportional...
Abstract
This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance test for the specification of materials. The article presents mathematical expressions for a flow curve of many metals in the region of uniform plastic deformation. It explains that the rate at which strain is applied to the tension specimen has an important influence on the stress-strain curve. The point of necking at maximum load can be obtained from the true stress-true strain curve by finding the point on the curve having a subtangent of unity. The article concludes with an overview of the ductility measurements performed by notch tensile and compression tests.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002453
EISBN: 978-1-62708-194-8
... specified; width free E /ρ Stiffness, length, section width specified; height free E 1/3 /ρ Column: compression strut far from buckling limit Stiffness and length specified; section area free E /ρ Column: compression strut, failure by elastic buckling Buckling load, length, section...
Abstract
This article defines performance indices in a formal way and specifies how they are derived. The performance indices for a light, strong tie and a light, stiff beam are presented. The article presents two case studies that illustrate the use of material indices, shape factors, and selection charts to select materials.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005161
EISBN: 978-1-62708-186-3
... of the bend radius is placed under a compressive stress. If failure or fracturing occurs during bending, it will occur at the outside bend surface. Wrinkling will occur on the inside surface of the bend. When the metal is stressed above its elastic limit, it acquires a permanent set. Some elasticity usually...
Abstract
Bending is a common metalworking operation to create localized deformation in sheets (or blanks), plates, sections, tubes, and wires. This article emphasizes on the bending of sheet metal along with some coverage on flanging. It informs that variations in the bending stresses cause springback after bending, and discusses the variables and their effects on springback, as well as the methods to overcome or counteract them. These methods include overbending, bottoming or setting, and stretch bending. The article provides information on elastic bending, non-cylindrical bending, elastic-plastic bending, and pure plastic bending. Sheet metal bendability is a critical factor in many forming operations. The article illustrates the derivation of two relevant bend-ductility equations.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0005689
EISBN: 978-1-62708-176-4
.... Compare with ognized: (1) an edge dislocation corresponds ing fault energy such as aluminum, iron, proportional limit. to the row of mismatched atoms along the and most bcc metals. elastic recovery. Amount the dimension of a edge formed by an extra, partial plane of at- dynamic strain aging. A behavior...
Abstract
This article is a compilation of terms related to mechanical testing and evaluation of metals, plastics, ceramics, and composites.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
... properties compressive properties creep properties creep-rupture properties elastic limits elastic moduli fabrication fatigue properties fracture properties materials selection proportional limits sample testing shear properties stress-strain curves tensile properties test specimen design...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003321
EISBN: 978-1-62708-176-4
... at which a given amount of plastic strain has occurred. The yield strength is related to the materials composition, mechanical working, and heat treatment. Elastic Limit Elastic limit (or proportional limit) is the load at which plastic deformation begins to take place. Removal of the load allows...
Abstract
This article describes the tests for the common types of fabricated components and modeling of metal deformation. It provides an overview of component testing and briefly reviews the relationship of mechanical properties in the process of mechanical design for static loads, cyclic loads, dynamic loads, and high-temperature materials. The article describes the general properties related to monotonic stress-strain behavior of steels. It also discusses materials properties and operating stresses as well as other factors, such as part shape and environmental effects, which play significant roles in the design process of components.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005136
EISBN: 978-1-62708-186-3
... at points A and B with the convex side of the bow or kink toward point C. Sufficient force is applied at C to cause the bar to become bowed in the opposite direction. The force must be great enough to exceed the elastic limit of the material, but it must set up just enough strain in the bar to allow...
Abstract
Bars, structural shapes, and long parts are straightened by bending, twisting, or stretching. This article describes the straightening of bars, shapes, and long parts by material displacement, heating, and presses. It explains the process of parallel-roll straightening, automatic press roll straightening, moving-insert straightening, parallel-rail straightening, and epicyclic straightening. The article concludes with a discussion on straightening in bar production.
1