Skip Nav Destination
Close Modal
Search Results for
edge dislocations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 330 Search Results for
edge dislocations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2005
Fig. 10 (a) Geometry of a row of edge dislocations, causing a misorientation between the two sections of the crystal. (b) Polished and etched surface of a germanium crystal revealing a subboundary by the row of etch pits associated with the dislocation cores. Reprinted from Ref 7 . Source: Ref
More
Image
Published: 01 December 2004
Fig. 4 Schematic representation of a section through an edge dislocation, which is perpendicular to the plane of the illustration and is indicated by the symbol ⊥
More
Image
Published: 01 December 2004
Fig. 6 Schematic representation of a crystal containing an edge dislocation, indicating qualitatively the stresses (shown by direction of arrows) at four positions around the dislocation
More
Image
Published: 01 January 2000
Image
in Introduction to the Mechanical Behavior of Nonmetallic Materials
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 20 (a) Schematic representation of an edge dislocation in NaCl. (b) Demonstration of how dislocation jogs in ionic crystals can have effective charges. Source: Ref 12
More
Image
Published: 01 June 2012
Image
in Fundamental Structure-Property Relationships in Engineering Materials
> Materials Selection and Design
Published: 01 January 1997
Fig. 11 A schematic of an edge dislocation, represented by a partial atomic plane, in a crystal. The “core” of the dislocation is localized at the partial plane termination. Atomic positions are distorted in region of this core, making slip easier in the vicinity of the dislocation. Source: Ref
More
Image
Published: 01 December 2004
Fig. 9 Schematic representation of dislocation-generated antiphase boundaries (APBs). The lower APB is generated by one edge dislocation, while the upper APB is terminated between a pair of edge dislocations, creating a superlattice dislocation. Source: Ref 9
More
Image
Published: 01 December 2004
Fig. 1 Fe-3Si single crystal, cold rolled 5% in the (111)[11 2 ¯ ] orientation. Trails of small dislocation loops, edge dislocation dipoles, and cusps on dislocation lines. Thin-foil TEM specimen prepared parallel to the rolling plane. 62,000×
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 3 Dislocation models for cleavage fracture. (a) Elastic crack regarded as a pileup of edge dislocations. (b) Pileup against a boundary forming a crack. (c) Crack forming by movement of dislocations on two slip planes. (d) Crack formation at tilt boundary. Source: Ref 4
More
Image
Published: 01 January 2005
Fig. 3 Fe-3Si single crystal, cold rolled 5% in the (111)[11 2 ] orientation. Trails of small dislocation loops, edge dislocation dipoles, and cusps on dislocation lines. Thin-foil TEM specimen prepared parallel to the rolling plane. Original magnification 62,000×
More
Image
Published: 01 December 2004
Fig. 7 Small-angle boundary (subboundary) of the tilt type, which consists of a vertical array of edge dislocations
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003733
EISBN: 978-1-62708-177-1
... the atomic sequence to be out of step and thus generate an APB (lower section of Fig. 9 ). The amount of dislocation-generated APBs can be minimized if dislocation pairs (for example, two edge dislocations) align such that the dislocation-generated APB is terminated at the other edge dislocation (upper...
Abstract
Superlattice is an ordered array of atoms that occur during their rearrangement from random site locations in the disordered solution to specific lattice sites in the ordered structure during phase transformation. This article provides a description of antiphase boundaries, their dislocations and degrees of ordering (long and short order). It focuses on the common superlattice structures and ordered phases observed in copper-gold and iron-aluminum alloy systems. These superlattice types can be referred to by Strukturbericht symbols and the prototype phase.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
..., trivacancies, and interstitial-vacancy pairs. Line Defects Dislocations are line defects that exist in all real crystals. An edge dislocation, which is the edge of an incomplete plane of atoms within a crystal, is represented in cross section in Fig. 9 . In this illustration, the incomplete plane...
Abstract
Crystal structure is the arrangement of atoms or molecules in the solid state that involves consideration of defects, or abnormalities, in idealized atomic/molecular arrangements. The three-dimensional aggregation of unit cells in the crystal forms a space lattice or Bravais lattice. This article provides a brief review of the terms and basic concepts associated with crystal structures. It also discusses some of the significant defects obstructing plastic flow in real crystals, namely point defects, line defects, stacking faults, twins, and cold work. Several tables in the article provide information on the crystal structures and lattice parameters of allotropes of metallic elements.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
... amplitudes (high values of N f ), arrangements of edge dislocation dipoles are found that form mainly due to single slip. Dislocations agglomerate to so-called bundles or veins, which are separated from each other by regions of low dislocation density (channels). Embedded in this matrix, persistent slip...
Abstract
This article discusses the microstructural processes that take place during plastic deformation and presents a plain phenomenological and general description of the cyclic stress-strain (CSS) response. It emphasizes the microstructural aspects of cyclic loading on single-phase materials tested in initially soft, dislocation-poor conditions resulting from a prior heat treatment. The article discusses deformation-induced phase transformations in austenitic stainless steels and commercial age-hardened aluminum alloys. It describes the interaction of dislocations and the strengthening of second-phase particles. The article also provides a description of the framework used to model the CSS response on a physical basis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... successfully used in back-reflection x-ray topography to clarify the screw character of the micropipes in SiC ( Ref 13 ). It also has been used to reveal the dislocation sense of screw dislocations ( Ref 14 ), the Burgers vectors of threading-edge dislocations ( Ref 15 ), the core structure of Shockley partial...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... in the overall amount of strain (e.g., when a large substitutional solute occupies a lattice site below the extra half-plane of atoms in an edge dislocation, i.e., where the strains are tensile in nature), the line energy of the dislocation will be reduced, as will the degree of misfit about the solute. Likewise...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Image
Published: 01 January 2005
Fig. 2 Deformation in a crystal lattice from slip of line defect (dislocation) from a position in (a) to the edge in (c). The vector b is the Burgers vector, which is defined as the unit displacement of a dislocation.
More
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006292
EISBN: 978-1-62708-163-4
... of this article. Crystal Structure Crystal structure is the arrangement of atoms in the interior of a crystal. A fundamental unit of the arrangement repeats itself at regular intervals in three dimensions throughout the interior of the crystal. Unit Cell A unit cell is a parallelepiped whose edges...
Abstract
This article defines crystallographic terms and concepts, including crystal structure, unit cell, structure symbols, lattice, space-group notation, and atom position. It schematically illustrates the atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. A table that lists the crystal structures of various metal elements is presented. The crystal structures are described by the Pearson symbols for crystal system, space lattice, total number of atoms per unit cell, and prototype structure. The article tabulates the assorted structure types of metallurgical interest arranged according to Pearson symbol. It also provides information on crystal defects, explaining some significant ones, such as point defects, line defects, stacking faults, and twins.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003722
EISBN: 978-1-62708-177-1
... of a crystal. A fundamental unit of the arrangement repeats itself at regular intervals in three dimensions throughout the interior of the crystal. Unit Cell A unit cell is a parallelepiped whose edges form the axes of a crystal. A unit cell is the smallest pattern of atomic arrangement. A crystal...
Abstract
This article describes crystallographic terms and concepts and illustrates various crystal structures. The crystallographic terms described include crystal structure, unit cell, crystal system, lattice, structure symbols, space-group notation, structure prototype, atom positions, point groups, and equivalent positions. The article presents a table of assorted structure types of metallurgical interest arranged according to the Pearson symbol. It also schematically illustrates atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. The article concludes with a description of some of the most significant crystal defects such as point defects, line defects, and stacking faults.