1-20 of 86 Search Results for

edge blanking

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer...
Book Chapter

By Robert Bolin
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
... producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances. ancillary operations automatic radial-axial multiple-mandrel ring mills blanking four-mandrel...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... pieces are broken out of the threads of the tools. This failure usually occurs near the edges of the tools or in the tool area where the ends of the blanks are rolled. Spalling is frequently the result of having improper bevels on the blanks and tools or of excessive tool hardness. Excessive variation...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... Abstract This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... Abstract Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... Abstract Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003987
EISBN: 978-1-62708-185-6
... as straight lines and sharp edges, which often are present in designs for decorative medals, also reduce die life unless the tonnage can be lowered. Low tonnage requirements often can be achieved by striking softer blanks, provided the blank is not so soft that a fin is extruded on coining...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... chemical or electrochemical attack of preferentially exposed surface. Essential steps: cleaning part; masking with tapes or resistant paints, or printing, using photoengraving techniques; etching; demasking; cleaning. Two processes involved: chemical milling, chemical blanking Fine abrasive particles...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004036
EISBN: 978-1-62708-185-6
... prevents complete closure of the dies. Fins also occur when die interfaces do not close perfectly because of rounded corners or edges, or when interfaces are forced apart by elastic deflection. After completion of forging, the flash is removed by any of several methods. The flash removal process is...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.9781627081979
EISBN: 978-1-62708-197-9
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003180
EISBN: 978-1-62708-199-3
... of brittle fracture. Molybdenum and tungsten blanks must have prepared edges to prevent cracking and splitting during forming. Molybdenum and tungsten are generally supplied in stress-relieved condition. Recrystallization increases the ductile-to-brittle transition temperature. Annealed...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
... simultaneous coiling of all slit strips ( Fig. 4 ). Other equipment can be added to the line for scrap disposal, coil handling, leveling and edge conditioning, and packaging. Fig. 4 Typical coil-slitting line Shearing lines (also called cut-up lines, cut-to-length lines, or blanking lines) are...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004040
EISBN: 978-1-62708-185-6
... depth—those with high h -to- W ratios—can be classified as true cavities. In piercing, a punch is forced into the workpiece to form a blind cavity by displacement, but without removal, of metal. Piercing is frequently employed in open-die work for starting a hole in a forging blank...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... are shown in Table 4 . Table 4 Nominal composition and properties of representative cemented carbides used for nonmachining applications Typical application Binder content, wt% Grain size Hardness, HRA Heavy blanking punches and dies, cold heading dies 20–30 Medium 85...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003113
EISBN: 978-1-62708-199-3
...% offset yield strength Elongation in 25 mm (1 in.), % Reduction of area, % Room-temperature Charpy V-notch impact energy Core hardness, HV30 Fatigue endurance limit Ratio of fatigue endurance to tensile strength MPa ksi MPa ksi J ft·lbf MPa ksi Blank carburized Upset 0.24 230...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004005
EISBN: 978-1-62708-185-6
... slugging or overweight slugs Galling or scoring of tools Improper lubrication of slugs Improper surface finish of tools Improper selection or improper heat treatment of tool material Improper edge or bend radii on punch or extrusion die Workpieces sticking to die No back relief on punch or...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003186
EISBN: 978-1-62708-199-3
... some or all of the following components: Raw material costs: The cost of unmachined stock, which may be in the form of a standard bar or slab, casting, or forged blank Labor costs: The wages for the machine operator, usually measured in units of standard hours Setup costs: The cost of...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000607
EISBN: 978-1-62708-181-8
..., Associated Spring, Barnes Group Inc.) Fig. 291 Fatigue failure of flat, cantilever-type AISI 1070 spring due to inadequate removal of blanking fracture. Failure initiated at a point on the edge of the spring. SEM, 100× (J.H. Maker, Associated Spring, Barnes Group Inc.) Figure 292 , 293 , and...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... the edge of the indentation is below the original surface. Sometimes there is no difference at all. The first phenomenon is called a “ridging” type of indentation and the second a “sinking” type. Cold worked metals generally have the former type of indentation, and annealed metals the latter type...