Skip Nav Destination
Close Modal
By
ASM International Committee on Nondestructive Testing of Composites, R.H. Bossi, D.E. Bowles, Y. Bar-Cohen, T.E. Drake ...
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Search Results for
eddy-current methods
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 281 Search Results for
eddy-current methods
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003234
EISBN: 978-1-62708-199-3
... Abstract Eddy-current inspection is a nondestructive evaluation method based on the principles of electromagnetic induction. Eddy-current methods are used to identify or differentiate a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic...
Abstract
Eddy-current inspection is a nondestructive evaluation method based on the principles of electromagnetic induction. Eddy-current methods are used to identify or differentiate a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. Giving a brief introduction on the uses of eddy-current inspection, this article discusses the operating principles and the principal operating variables encountered in eddy-current inspection, including coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. It further describes different aspects of eddy current testing such as the selection of inspection frequencies and the types and configurations of inspection coils. The article also deals with the eddy current instrumentation and the discontinuities that are detectable by eddy-current methods.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005616
EISBN: 978-1-62708-174-0
... Abstract This article describes the fundamental aspects of three nondestructive evaluation (NDE) methods of solid-state welds in terms of operation principles. These methods are radiography, ultrasound, and eddy current methods. The article provides examples of these NDE techniques performed...
Abstract
This article describes the fundamental aspects of three nondestructive evaluation (NDE) methods of solid-state welds in terms of operation principles. These methods are radiography, ultrasound, and eddy current methods. The article provides examples of these NDE techniques performed on various types of flaws resulting from solid-state welding processes.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
... Abstract This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
Image
in Nondestructive Inspection of Steel Bar, Wire, and Billets[1]
> Nondestructive Evaluation of Materials
Published: 01 August 2018
Fig. 12 Eddy-current flaw-detection method for cold-drawn hexagonal bars. (a) Location of artificial flaws ranging from 0.5 to 19 mm (0.020 to 3 4 in.) below probe position. (b) Schematic of setup for standard voltage comparison (encircling coil) method (left) and plot of signals
More
Image
Published: 15 January 2021
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006477
EISBN: 978-1-62708-190-0
... Abstract A number of nondestructive evaluation (NDE) methods, such as radiography, ultrasound, and eddy current, are available to detect flaws in solid materials. This article describes the fundamental aspects of these NDE methods in terms of operation principles. It presents some examples...
Abstract
A number of nondestructive evaluation (NDE) methods, such as radiography, ultrasound, and eddy current, are available to detect flaws in solid materials. This article describes the fundamental aspects of these NDE methods in terms of operation principles. It presents some examples of the methods performed on various types of flaws resulting from solid-state welding processes.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006450
EISBN: 978-1-62708-190-0
... on a conductive metal, or the thickness of a nonmagnetic metal coating on a magnetic metal Because eddy currents are created using an electromagnetic induction technique, the inspection method does not require direct electrical contact with the part being inspected. The eddy current method is adaptable...
Abstract
Eddy-current inspection is based on the principles of electromagnetic induction and is used to identify or differentiate among a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. This article discusses the advantages and limitations of eddy-current inspection, as well as the development of the eddy-current inspection process. It reviews the principal operating variables encountered in eddy-current inspection: coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. The article illustrates some of the principal impedance concepts that are fundamental to understanding of and effective application of eddy-current inspection. It discusses various types of eddy-current instruments, such as the resistor and single-coil system, bridge unbalance system, induction bridge system, and through transmission system. The article concludes with a discussion on the inspection of aircraft structural and engine components.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
... of the rate of purification of the aluminum matrix from the solute atoms, that is, copper and magnesium in the case of 2024 alloy. After isothermal aging at 190 °C (374 °F) for approximately 50 h, the final alternating-current conductivity as measured by the eddy-current method approaches the nominal value...
Abstract
Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation of electrical conductivity of alloy 2024 samples as a function of aging time at different isothermal holding temperatures.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006443
EISBN: 978-1-62708-190-0
..., and aluminum are particularly poor choices for reference standards for penetrant inspection and require some type of protection if used as ultrasonic standards. Eddy current methods are not affected by foreign material in the flaw but are very sensitive to such surface conditions as scratches, pitting...
Abstract
The success of a reliable non-destructive evaluation (NDE) application depends greatly on the expertise and thoroughness of the NDE engineering that is performed. This article discusses the general considerations of NDE in terms of NDE response and NDE system management and schedule. It describes the NDE engineering and NDE process control, along with some case studies related to the applications of NDE. The article reviews various models for predicting NDE reliability, such as ultrasonic inspection model, eddy current inspection model, and radiographic inspection model. It concludes with an example that illustrates the integration of an ultrasonic reliability model with a CAD system.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006467
EISBN: 978-1-62708-190-0
... for drawn wires, rotating-type eddy-current flaw detection has been used in combination with rotating ultrasonic flaw detection to detect surface defects and inside flaws, respectively, in a two-step process. However, the high cost and inefficiency of this method have prompted the development of a system...
Abstract
This article focuses on nondestructive inspection of steel bars. The primary objective in the nondestructive inspection of steel bars and wire is to detect conditions in the material that may be detrimental to the satisfactory end use of the product. The article discusses various types of flaws encountered in the inspection of steel bars, including porosity, inclusions, scabs, cracks, seams, and laps. Inspection methods, such as magnetic-particle inspection. liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection, of steel bars are also described. The article provides a discussion on electromagnetic systems, eddy-current systems, and magnetic permeability systems for detection of flaws on steel bars. It concludes with a description of nondestructive inspection of steel billets.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described. eddy-current testing liquid penetrant inspection magnetic-particle inspection...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... the time delay of the reflected pulse from its tip. The electromagnetic methods are generally more accurate for measuring the depth of surface cracks in metal. The eddy-current technique is more precise for measurements of shallower cracks, and the ac field measurements for deeper cracks, where...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
..., and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006336
EISBN: 978-1-62708-179-5
..., or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing...
Abstract
Nondestructive inspection (NDI) methods for cast iron are used to ensure that the parts supplied perform as required by the purchaser. This article focuses on the principal nondestructive methods used to inspect for anomalies in cast irons and to determine if the volume, shape, size, or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing, and leak testing. The technique, strengths, and weaknesses of each of the nondestructive methods are also discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001473
EISBN: 978-1-62708-173-3
... Abstract This article describes the applications, methods, and limitations of five principal nondestructive test methods, namely, penetrant testing, magnetic-particle testing, eddy current testing, radiographic testing, and ultrasonic testing. The article also provides guidance for the method...
Abstract
This article describes the applications, methods, and limitations of five principal nondestructive test methods, namely, penetrant testing, magnetic-particle testing, eddy current testing, radiographic testing, and ultrasonic testing. The article also provides guidance for the method selection for respective applications.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005863
EISBN: 978-1-62708-167-2
... testing methods, namely, magnetic particle testing, ultrasonic testing, and eddy current testing to evaluate induction-hardened components. case depth frequency induction hardening inductors inspection nondestructive testing quenching surface hardness evaluation Introduction Metals...
Abstract
Induction hardening of steel components is the most common application of induction heat treatment of steel. This article provides a detailed account of electromagnetic and thermal aspects of metallurgy of induction hardening of steels. It describes induction hardening techniques, namely, scan hardening, progressive hardening, single-shot hardening, and static hardening. The article discusses the techniques used to control the heat pattern, and provides a brief review of quenching techniques used in the induction hardening. It provides guidelines for selecting the frequency and power for induction hardening, and describes common methods for measuring case depth, such as optical and microhardness, and surface hardness. It provides information on some complications and ambiguities associated with these measurements. The article also discusses the commonly used non-destructive testing methods, namely, magnetic particle testing, ultrasonic testing, and eddy current testing to evaluate induction-hardened components.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003436
EISBN: 978-1-62708-195-5
..., radiography, X-ray computed tomography, thermography, low-frequency vibration methods, acoustic emission, eddy current testing, optical holography, and shearography. The article presents some examples are for fiber-reinforced polymer-matrix composites. Many of the techniques have general applicability...
Abstract
This article introduces the principal methodologies and some technologies that are being applied for nondestructive evaluation of composite materials. These include ultrasonic testing (UT), air-coupled UT, laser UT, ultrasonic spectroscopy, leaky lamb wave method, acousto-ultrasonics, radiography, X-ray computed tomography, thermography, low-frequency vibration methods, acoustic emission, eddy current testing, optical holography, and shearography. The article presents some examples are for fiber-reinforced polymer-matrix composites. Many of the techniques have general applicability to other types of composites such as metal-matrix composites and ceramic-matrix composites.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
... acoustic transducer, radiography, thermography, and low-frequency vibration methods. The article also provides information on NDE methods commonly used for metal-matrix composites. acoustic emission computed tomography digital radiography eddy-current electromagnetic acoustic transducer fiber...
Abstract
This article introduces the principal methodologies and some advanced technologies that are being applied for nondestructive evaluation (NDE) of fiber-reinforced polymer-matrix composites. These include acoustic emission, ultrasonic, eddy-current, computed tomography, electromagnetic acoustic transducer, radiography, thermography, and low-frequency vibration methods. The article also provides information on NDE methods commonly used for metal-matrix composites.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
... electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging. additive manufacturing cracking eddy current technique electromagnetic...
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
1