Skip Nav Destination
Close Modal
By
Jeong Na, Roger Spencer, Evgueni Todorov, Sean Gleeson, Perry White
By
W. Brian James
By
S. Shanmugham, P.K. Liaw
By
Aquil Ahmad, John Lisio
By
S. Lampman, M. Mulherin, R. Shipley
By
Valery Rudnev, Gregory A. Fett, Arthur Griebel, John Tartaglia
By
Wilson Vesga, Ben Dutton
Search Results for
eddy-current conductivity measurement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 237
Search Results for eddy-current conductivity measurement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Hardness and Electrical Conductivity Testing of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
... assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation...
Abstract
Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation of electrical conductivity of alloy 2024 samples as a function of aging time at different isothermal holding temperatures.
Book Chapter
Eddy-Current Inspection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003234
EISBN: 978-1-62708-199-3
... of electromagnetic induction and is used to identify or differentiate a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. Eddy-current inspection is used: To measure and identify conditions and properties...
Abstract
Eddy-current inspection is a nondestructive evaluation method based on the principles of electromagnetic induction. Eddy-current methods are used to identify or differentiate a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. Giving a brief introduction on the uses of eddy-current inspection, this article discusses the operating principles and the principal operating variables encountered in eddy-current inspection, including coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. It further describes different aspects of eddy current testing such as the selection of inspection frequencies and the types and configurations of inspection coils. The article also deals with the eddy current instrumentation and the discontinuities that are detectable by eddy-current methods.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006450
EISBN: 978-1-62708-190-0
... or differentiate among a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. Eddy-current inspection can be used to: Measure or identify such conditions and properties as electrical conductivity, magnetic...
Abstract
Eddy-current inspection is based on the principles of electromagnetic induction and is used to identify or differentiate among a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. This article discusses the advantages and limitations of eddy-current inspection, as well as the development of the eddy-current inspection process. It reviews the principal operating variables encountered in eddy-current inspection: coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. The article illustrates some of the principal impedance concepts that are fundamental to understanding of and effective application of eddy-current inspection. It discusses various types of eddy-current instruments, such as the resistor and single-coil system, bridge unbalance system, induction bridge system, and through transmission system. The article concludes with a discussion on the inspection of aircraft structural and engine components.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005341
EISBN: 978-1-62708-187-0
... Fluoroscopic inspection and automated defect recognition Ultrasonic inspection Eddy current inspection Process-Controlled resonant testing Leak test Electrical conductivity measurements This article summarizes the application of these nondestructive tests to castings. The general subjects...
Abstract
The commonly used nondestructive testing of cast products include liquid penetrant inspection, radiographic inspection, fluoroscopic inspection and automated defect recognition, ultrasonic inspection, eddy current inspection, process-controlled resonant testing (PCRT), leak test, and electrical conductivity measurements. This article summarizes the application of these nondestructive tests to castings. It also tabulates a partial list of automotive part types and materials amenable to PCRT and lists the potential limitations to the use of PCRT.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006336
EISBN: 978-1-62708-179-5
... of the eddy currents that create the secondary magnetic field is a function of the material conductivity. So, in essence, eddy-current inspection is a very precise measurement of conductivity. Signal analysis using a complex impedance plot can provide significant information on materials processing...
Abstract
Nondestructive inspection (NDI) methods for cast iron are used to ensure that the parts supplied perform as required by the purchaser. This article focuses on the principal nondestructive methods used to inspect for anomalies in cast irons and to determine if the volume, shape, size, or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing, and leak testing. The technique, strengths, and weaknesses of each of the nondestructive methods are also discussed.
Book Chapter
Nondestructive Evaluation of Solid-State Welds
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005616
EISBN: 978-1-62708-174-0
... in a conductive material when the material is placed in a changing magnetic field. It can be used for both ferrous and nonferrous materials. Usually, a drive coil carrying an alternating current induces a swirl of circulating electrical currents, called eddy currents, as shown in Fig. 3 ( Ref 3 ).The eddy...
Abstract
This article describes the fundamental aspects of three nondestructive evaluation (NDE) methods of solid-state welds in terms of operation principles. These methods are radiography, ultrasound, and eddy current methods. The article provides examples of these NDE techniques performed on various types of flaws resulting from solid-state welding processes.
Book Chapter
Nondestructive Evaluation of Solid-State Welds
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006477
EISBN: 978-1-62708-190-0
... scanning techniques. Model-based algorithms can be developed to use eddy-current signal amplitude and phase information to plot the array data in terms of the material electrical conductivity. The conductivity data collected with an array technique have been used to correlate the eddy-current measurement...
Abstract
A number of nondestructive evaluation (NDE) methods, such as radiography, ultrasound, and eddy current, are available to detect flaws in solid materials. This article describes the fundamental aspects of these NDE methods in terms of operation principles. It presents some examples of the methods performed on various types of flaws resulting from solid-state welding processes.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... the time delay of the reflected pulse from its tip. The electromagnetic methods are generally more accurate for measuring the depth of surface cracks in metal. The eddy-current technique is more precise for measurements of shallower cracks, and the ac field measurements for deeper cracks, where...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009152
EISBN: 978-1-62708-186-3
... on the electrical characteristics of the part, the presence or absence of flaws or discontinuities in the part, and the total electromagnetic field within the part ( Ref 19 ). Flaws such as cracks can be detected by the change in flow of eddy currents in the part ( Ref 19 ). Measurement of Material Flow during...
Abstract
This article discusses the installation of the most commonly used force-monitoring devices, namely, load cells and piezoelectric force sensors. It describes the purpose and operation of commonly used displacement sensors, such as linear variable differential transformers, proximity sensors, photoelectric sensors, and ultrasonic sensors. The article provides information on the sensors used for detecting tool breakages and flaws in parts, the measurement of material flow during sheet metal forming, and lubrication. It also describes the operating stages of machine vision systems used for automated quality-control purposes. The theory of eddy-current-based material properties evaluation is also discussed.
Book Chapter
Nondestructive Evaluation of Pressed and Sintered Powder Metallurgy Parts
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
... within a conductive solid will create currents that are influenced by structural irregularities, including cracks and porosity. This characteristic has been used to measure carburized case depth in wrought steels ( Ref 4 , 5 ). The arrangement shown in Fig. 4 is used to measure a voltage drop...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001473
EISBN: 978-1-62708-173-3
... than it is with an eddy-current test. Flaw characterization based on ultrasonic tests is currently a matter of much interest. Flaw Size After a flaw has been detected and its nature determined, the next step is to measure its dimensions. Measuring the length of a flaw is straightforward. However...
Abstract
This article describes the applications, methods, and limitations of five principal nondestructive test methods, namely, penetrant testing, magnetic-particle testing, eddy current testing, radiographic testing, and ultrasonic testing. The article also provides guidance for the method selection for respective applications.
Book Chapter
Detection and Monitoring of Fatigue Cracks
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
... allows NDE device measurement of wall thickness (Section 10.13.4) and requires NDE inspection to be full body, full length for most pipe grades (with options for ultrasonic, flux-leakage, eddy-current, and magnetic-particle testing, depending on the grade and specification level). Individual NDE...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
Book Chapter
Nondestructive Inspection of Steel Bar, Wire, and Billets
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006467
EISBN: 978-1-62708-190-0
... to the rotating probe method but is less expensive and can efficiently detect cracks resulting from the cold working process. This method, which can detect material flaws more than 0.6 mm (0.024 in.) deep, is illustrated in Fig. 13 . Fig. 13 Plot of eddy-current signal output versus flaw depth to measure...
Abstract
This article focuses on nondestructive inspection of steel bars. The primary objective in the nondestructive inspection of steel bars and wire is to detect conditions in the material that may be detrimental to the satisfactory end use of the product. The article discusses various types of flaws encountered in the inspection of steel bars, including porosity, inclusions, scabs, cracks, seams, and laps. Inspection methods, such as magnetic-particle inspection. liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection, of steel bars are also described. The article provides a discussion on electromagnetic systems, eddy-current systems, and magnetic permeability systems for detection of flaws on steel bars. It concludes with a description of nondestructive inspection of steel billets.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001109
EISBN: 978-1-62708-162-7
...) in the superconductor and therefore results in a resistive loss. Alternating Current Losses The power loss associated with time-varying fields can be broken into three components (see Fig. 18 and Ref 23 ): Hysteresis Penetration Eddy currents Fig. 18 Measurements of the ac loss...
Abstract
Superconductivity has been found in a wide range of materials, including pure metals, alloys, compounds, oxides, and organic materials. Providing information on the basic principles, this article discusses the theoretical background, types of superconductors, and critical parameters of superconductivity. It discusses the magnetic properties of selected superconductors and types of stabilization, including cryogenic stability, adiabatic stability, and dynamic stability. The article also focuses on alternating current losses in superconductors, including hysteresis loss, penetration loss, eddy current loss, and radio frequency loss. Furthermore, the article describes the flux pinning phenomenon and Josephson effects.
Book Chapter
Reliability of Flaw Detection by Nondestructive Inspection
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006443
EISBN: 978-1-62708-190-0
... by both direct measurements and comparisons to equipment known to be operating properly. The frequency and amplitude of the eddy current generating output can be directly measured. The adequacy of the scanning devices is most easily checked by scanning production parts with flaws located in critical areas...
Abstract
The success of a reliable non-destructive evaluation (NDE) application depends greatly on the expertise and thoroughness of the NDE engineering that is performed. This article discusses the general considerations of NDE in terms of NDE response and NDE system management and schedule. It describes the NDE engineering and NDE process control, along with some case studies related to the applications of NDE. The article reviews various models for predicting NDE reliability, such as ultrasonic inspection model, eddy current inspection model, and radiographic inspection model. It concludes with an example that illustrates the integration of an ultrasonic reliability model with a CAD system.
Book Chapter
Nondestructive Testing in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... Information on many parameters provided simultaneously The method is based on the indirect measurement of eddy currents when a coil conducting an alternating current is placed around or near the surface of the sample ( Fig. 8 ). The conducting coil carries a high-frequency alternating current...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Book Chapter
Guide to Nondestructive Testing and Inspection Methods
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003228
EISBN: 978-1-62708-199-3
..., scratches, cracks, or color; strain in transparent materials; corrosion Often convenient; can be automated Can be applied only to surfaces, through surface openings, or to transparent material Paper, wood, or metal for surface finish and uniformity Eddy current Changes in electrical conductivity...
Abstract
This article reviews nondestructive testing (NDT) and inspection techniques, namely liquid penetrant, magnetic particle, ultrasonics, X-ray, eddy current, visual and radiography that are commonly used to detect and evaluate flaws or leaks in an engineering system. This article compares the merits and limitations of these techniques and describes the various uses of NDT, including leak detection, metrology, structure or microstructure characterization, stress-strain response determination, and rapid identification of metals and alloys.
Book Chapter
Principles of Induction Hardening and Inspection
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005863
EISBN: 978-1-62708-167-2
... can be heated by the process of electromagnetic induction, whereby an alternating magnetic field near the surface of a metallic (or electrically conductive) workpiece induces eddy currents (and thus heating) within the workpiece. The basic components of an induction system are the inductor (coil...
Abstract
Induction hardening of steel components is the most common application of induction heat treatment of steel. This article provides a detailed account of electromagnetic and thermal aspects of metallurgy of induction hardening of steels. It describes induction hardening techniques, namely, scan hardening, progressive hardening, single-shot hardening, and static hardening. The article discusses the techniques used to control the heat pattern, and provides a brief review of quenching techniques used in the induction hardening. It provides guidelines for selecting the frequency and power for induction hardening, and describes common methods for measuring case depth, such as optical and microhardness, and surface hardness. It provides information on some complications and ambiguities associated with these measurements. The article also discusses the commonly used non-destructive testing methods, namely, magnetic particle testing, ultrasonic testing, and eddy current testing to evaluate induction-hardened components.
Book Chapter
Nondestructive Testing in Additive Manufacturing—A Review
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007023
EISBN: 978-1-62708-439-0
... be measured layerwise ( Ref 51 ). The acquired data can be analyzed either in real-time during the fabrication, to monitor the process and part quality, or right after the build cycle is finished, to thoroughly inspect the parts for the presence of defects. Fig. 24 Illustration of an eddy current...
Abstract
This article covers defect formation and classification, followed by a brief description of the most common nondestructive testing (NDT) methods used for postbuild inspection. Descriptions of the established and emerging NDT techniques for in-process monitoring (IPM) and in-process inspection (IPI) in additive manufacturing (AM) also are provided, highlighting the advantages and limitations. The article concludes with a list of the main NDT methods and techniques used. As qualification and certification of AM parts is an urgent matter for the AM industry, a description of the current work carried out for developing standards is also included.
1