Skip Nav Destination
Close Modal
By
George T. (Rusty) Gray, III
Search Results for
ductile materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1759
Search Results for ductile materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006089
EISBN: 978-1-62708-175-7
... Abstract Milling of materials, whether hard and brittle or soft and ductile, is of prime interest and of economic importance to the powder metallurgy (PM) industry. This article discusses the principles of milling, milling parameters, and the powder characteristics required for the process...
Abstract
Milling of materials, whether hard and brittle or soft and ductile, is of prime interest and of economic importance to the powder metallurgy (PM) industry. This article discusses the principles of milling, milling parameters, and the powder characteristics required for the process. It discusses the changes in powder particle morphology that occur during milling of metal powders produced by various processes such as microforging, fracturing, agglomeration, and deagglomeration. The article also provides useful information on milling equipment such as tumbler ball mills, vibratory ball mills, attrition mills, and hammer and rod mills.
Book Chapter
Shock Wave Testing of Ductile Materials
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003303
EISBN: 978-1-62708-176-4
... Abstract The study of the physical properties of ductile solids subjected to shock wave loading is undertaken to understand how the thermodynamic conditions and strain rate affect material response. This article presents a description of a range of possible experimental techniques to quantify...
Abstract
The study of the physical properties of ductile solids subjected to shock wave loading is undertaken to understand how the thermodynamic conditions and strain rate affect material response. This article presents a description of a range of possible experimental techniques to quantify the structure/property effects of planar shock waves on ductile materials (metals and alloys) due to the wave propagation through the material. The techniques include explosive-driven shock-loading methods, shock-loading methods using exploding foil and laser-driven impactors, gas/powder launcher-driven shock loading methods, and radiation-driven shock-loading methods. Design parameters for shock recovery fixtures, spallation fixtures, and the flyer-plate experiment, are also discussed.
Image
(a) Abrasive wear of ductile materials, involving plastic deformation follo...
Available to PurchasePublished: 31 December 2017
Fig. 4 (a) Abrasive wear of ductile materials, involving plastic deformation followed by plowing or cutting. (b) Abrasive wear of brittle materials, involving fracture and delamination. (c) and (d) Worn surface of 304 stainless steel. (e) Worn surface of SiCp-reinforced magnesium-matrix
More
Image
Published: 31 December 2017
Image
Published: 01 January 2002
Image
Published: 01 January 1996
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003293
EISBN: 978-1-62708-176-4
..., Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within the sample...
Abstract
High strain rate testing is important for many engineering structural applications and metalworking operations. This article describes various methods for high strain rate testing. Several methods have been developed, starting with the pioneering work of John Hopkinson and his son, Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within the sample.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006382
EISBN: 978-1-62708-192-4
... wear mechanism in ductile materials and commonly used testers for evaluating the resistance of materials to abrasive wear. The testers include pin-on-disk, block-on-ring, block-on-drum, and dry sand/rubber wheel abrasion tester. The article reviews the abrasion resistance of metallic materials, ceramic...
Abstract
Abrasive wear is a surface-damage process with material loss caused by hard asperities or abrasive particles occurring when two surfaces are sliding against each other. There are two types of abrasive wear: two-body abrasion and three-body abrasion. This article discusses the abrasive wear mechanism in ductile materials and commonly used testers for evaluating the resistance of materials to abrasive wear. The testers include pin-on-disk, block-on-ring, block-on-drum, and dry sand/rubber wheel abrasion tester. The article reviews the abrasion resistance of metallic materials, ceramic materials, and polymeric materials. It discusses factors that influence abrasive wear, including the environment, hardness, toughness, microstructure, and lubrication.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... Abstract This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Image
Effects of superposed pressure on the ductility of DRA. Ref and Material: ⊞...
Available to PurchasePublished: 01 January 1996
Fig. 19 Effects of superposed pressure on the ductility of DRA. Ref and Material: ⊞ Ref 40 , AZ91/SiC/20p-T4; ◊ Ref 28 , MB85/SiC/15p-UA; + Ref 28 , MB85/SiC/15p-OA; □ Ref 27 , 6061/SiC/20p-UA; ■ Ref 27 , 6061/SiC/20p-OA; Δ Ref 40 , A356/SiC/10p-T6; ▲ Ref 40 , A356/SiC/20p-T6; ○ Ref 40
More
Image
Ductility of metallic materials initially increases as the temperature rise...
Available to PurchasePublished: 01 January 2002
Fig. 37 Ductility of metallic materials initially increases as the temperature rises above room temperature but then goes through a minimum before it rises again. See text for discussion. Source: Ref 49
More
Image
Effect of temperature on strength and ductility of various materials. (a) 0...
Available to PurchasePublished: 01 January 2000
Fig. 1 Effect of temperature on strength and ductility of various materials. (a) 0.2 offset yield strength. (b) Tensile elongation. Source: Ref 2
More
Image
Subsurface regions for (a) ductile and (b) brittle or nondeforming material...
Available to PurchasePublished: 15 January 2021
Image
Ductility of metallic materials initially increases as the temperature rise...
Available to PurchasePublished: 15 January 2021
Fig. 38 Ductility of metallic materials initially increases as the temperature rises above room temperature but then goes through a minimum before it rises again. TG, transgranular; IG, intergranular. See text for discussion. Source: Ref 25
More
Image
Comparison of fracture models for two materials with differing ductility, d...
Available to Purchase
in Structure-Properties Relationships in Metal Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 1 Comparison of fracture models for two materials with differing ductility, dependent on stress state and influence of increasing pore size. L-PBF, laser powder-bed fusion. Source: Ref 10
More
Image
Published: 31 December 2017
Fig. 14 (a) Effect of material toughness on wear resistance. Source: Ref 16 . (b) The area under a stress-strain curve represents the deformation energy absorbed up to failure, which is a measure of toughness. A brittle material (m3) with high hardness (or yield strength) but low ductility
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion. abrasive erosion brittle materials cavitation erosion ductile materials erosion erosion corrosion EROSION...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Image
Schematic of the situation in front of a crack tip in a moderately ductile ...
Available to Purchase
in Fundamental Structure-Property Relationships in Engineering Materials
> Materials Selection and Design
Published: 01 January 1997
Fig. 31 Schematic of the situation in front of a crack tip in a moderately ductile material. Because of the stress concentration, the material yields plastically in front of the crack tip. Concurrent with yielding, the crack tip is blunted. Source: Ref 4
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003265
EISBN: 978-1-62708-176-4
... compression testing compression test subscale testing mechanical behaviour deformation axial compression testing stress-strain behaviour metallic materials compressive properties plasticity plastic deformation ductile fracture compressive instability buckling medium-strain-rate testing...
Abstract
Compression tests are used for subscale testing and characterizing the mechanical behavior of anisotropic materials. This article discusses the characteristics of deformation during axial compression testing, including deformation modes, compressive properties, and compression-test deformation mechanics. It describes the procedures for the use of compression testing for the measurement of the deformation and fracture properties of materials. The article provides a detailed discussion on the technique involved in determining the stress-strain behavior of metallic materials based on the ASTM E 9, "Compression Testing of Metallic Materials at Room Temperature." It also reviews the factors that influence the generation of test data for tests conducted in accordance with the ASTM E 9 and the capabilities of conventional universal testing machines for compression testing.
1