Skip Nav Destination
Close Modal
Search Results for
dual-ion-beam sputtering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-18 of 18 Search Results for
dual-ion-beam sputtering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001290
EISBN: 978-1-62708-170-2
... chemical processes occurring at the film-vacuum interface during IBAD and dual-ion-beam sputtering with illustrations. The article also reviews the methods used for large-area, high-volume implementation of IBAD and the modes of film formation for IBAD. It contains a table that presents information on...
Abstract
Ion-beam-assisted deposition (IBAD) refers to the process wherein evaporated atoms produced by physical vapor deposition are simultaneously struck by an independently generated flux of ions. This article discusses the energy utilization of this process. It describes the physical and chemical processes occurring at the film-vacuum interface during IBAD and dual-ion-beam sputtering with illustrations. The article also reviews the methods used for large-area, high-volume implementation of IBAD and the modes of film formation for IBAD. It contains a table that presents information on deposition and synthesis of inorganic compounds by IBAD and concludes with a discussion on the improved coating properties, advantages, limitations, and applications of IBAD.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... collide with electrons from the substrate and become ions. They impinge on the substrate in ionic form, pick up electrons, and return to the atomic state, forming the coating. Figure 5 shows a schematic of the ion plating process with a resistance heated vaporization source. Electron beam evaporation is...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... DIBS dual-ion-beam sputtering DIN Deutsche Industrie-Normen (German Industrial Standards) DLC diamondlike carbon dL / dX loading rate dpa displacements per incident atom DPH diamond pyramid hardness (Vickers hardness) e natural log base, 2.71828; charge of an...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006677
EISBN: 978-1-62708-213-6
... modification, or a variety of other tasks, which are discussed later. However, the more common configuration today (2019) is the FIB-SEM (also known as dual beam or cross beam). These instruments are a combination of an FIB and an SEM in which the ion beam and the electron beam are nominally coincident, that...
Abstract
This article is intended to provide the reader with a good understanding of the underlying science, technology, and the most common applications of focused ion beam (FIB) instruments. It begins with a survey of the various types of FIB instruments and their configurations, discusses the essential components, and explains their function only to the extent that it helps the operator obtain the desired results. An explanation of how the components of ion optical column shape and steer the ion beam to the desired target locations is then provided. The article also reviews the many diverse accessories and options that enable the instrument to realize its full potential across all of the varied applications. This is followed by a detailed analysis of the physical processes associated with the ion beam interacting with the sample. Finally, a complete survey of the most prominent FIB applications is presented.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001292
EISBN: 978-1-62708-170-2
... typically do use toxic gases for production of ion beams, and chlorine gas is sometimes used for producing heavy metal ion beams. However, implanters using a MEVVA, high-temperature, or sputtering heavy ion source do not require the use of toxic gases. The use of high voltages for ion acceleration and ion...
Abstract
Ion implantation involves the bombardment of a solid material with medium-to-high-energy ionized atoms and offers the ability to alloy virtually any elemental species into the near-surface region of any substrate. This article describes the fundamentals of the ion implantation process and discusses the advantages, limitations, and applications of ion implantation. It also reviews a typical medium current semiconductor implanter adapted for implantation of metals with the aid of illustrations.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006648
EISBN: 978-1-62708-213-6
... internal standard, and the concentration of the matrix element can be approximated to 100%. Then, c IS = 1, and c X can be directly determined as: c X = I X I IS RSF X = IBR X · RSF X where IBR is the ion beam ratio. The RSFs can be measured on different days by...
Abstract
This article provides a brief account of glow discharge mass spectrometry (GDMS) for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative materials. It begins by describing the general principles of GDMS. This is followed by a discussion on the various components of a GDMS system as well as commercial GDMS instruments. A description of processes involved in specimen preparation and cleaning in GDMS is then presented. Various problems pertinent to multielemental calibrations in GDMS are discussed along with measures to overcome them. The article further provides information on the processes involved in the analytical setup of parameters in GDMS, covering the steps involved in the analysis of GDMS data. It ends with a section on the application and interpretation of GDMS in the metals industry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... stages, and automated SEM control enabled significant advances in high-throughput analysis. Focused ion beams were combined with SEM to produce dual-beam instruments. Specially designed SEMs, called variable-pressure/environmental SEMs, are equipped with differential pumping so the specimen chamber can...
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
..., etc. 0.2–10 nm 10–80 pm Broad usage in research and development of nanomaterials and applications of nanotechnology and micromanufacturing that involves understanding, characterization, and manipulating surfaces at atomic or nanometer scale Secondary ion mass spectroscopy Ion beam Secondary...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006641
EISBN: 978-1-62708-213-6
... quadrupole; high-resolution magnetic sector; and time-of-flight, with quadrupole being the most commonly and widely used. An ion detector is a structure or device that multiplies incident charges and converts an incident or impinging ion beam emerged from a mass analyzer into an amplified...
Abstract
This article discusses the basic principles of inductively coupled plasma mass spectrometry (ICP-MS), covering different instruments used for performing ICP-MS analysis. The instruments covered include the sample-introduction system, ICP ion source, mass analyzer, and ion detector. Emphasis is placed on ICP-MS applications in the semiconductor, photovoltaic, materials science, and other electronics and high-technology areas.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... general features of ductile and brittle fracture modes. fractography fracture modes scanning electron microscopy specimen preparation THE SCANNING ELECTRON MICROSCOPE has unique capabilities for analyzing surfaces. A beam of electrons moves in an x - y pattern across a conductive specimen...
Abstract
Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging and analytical capabilities, specimen preparation, and the interpretation of fracture features. SEM can be subdivided into four systems, namely, illuminating/imaging, information, display, and vacuum systems. The article also describes the major criteria and techniques of SEM specimen preparation, and the general features of ductile and brittle fracture modes.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... surface topography is adequate for EDS. Instead of selecting a region of interest for a static x-ray dot map, the new systems allow for dynamic exploration of a sample because the software color-codes each element on the basis of characteristic x-rays. Dual-beam electron/ion beam systems, or focused ion...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... conventional steels. The most common application techniques include sputter coating and ion beam deposition, respectively. The effectiveness of these coatings is sensitive to application conditions (temperature, substrate preparation, etc.) as well as coating thickness. Physical vapor deposition coatings...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... laboratory furnaces or small pilot plant furnaces. Stabilized zirconia is an extremely refractory oxide that conducts electricity via the transport of oxygen ions. It has to be preheated to 1000 to 1200 °C (1830 to 2190 °F) using an auxiliary furnace (often using MoSi 2 or LaCr 2 O 4 heating elements...
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... reaction occurs in which hydrogen gas is evolved and the zinc dissolves, forming an acidic aqueous solution of zinc chloride (ZnCl 2 ): (Eq 1) Zn + 2 HCl → Zn Cl 2 + H 2 Because the chloride ion is not involved in the reaction, this equation can be written in a simplified form...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... uses the flow of carbonate ions to sustain the oxidation reaction. In operation, hydrogen and carbon monoxide are fed through the porous anode (3 to 6 μm pores, 65% porosity) to react with carbonate ions at the electrolyte interface to form water, carbon dioxide, and free electrons. The electrons are...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
... exceptional. Possible reactions may take many forms, but two are important. In acidic solutions, exchange can readily occur between H + ions exposed to the surface of the glass and alkali ions in the glass. This ion exchange often results in the formation of an iridescent, soluble layer on the glass surface...
Abstract
This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant applications, lighting, information display, electronic processing and electronic devices, optical and ophthalmic products, and communications equipment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003009
EISBN: 978-1-62708-200-6
..., and deformation. Typical fillers include glass, carbon, graphite, bronze, and molybdenum disulfide. Ionomers are advanced thermoplastic resins that contain metal ions in addition to organic-chain molecules. These ions, which in most commercial products are either sodium or zinc, serve as...
Abstract
Advanced thermoplastics are stiff, moldable plastics that compete with traditional engineering thermoplastics and thermosets owing to their good tensile, compressive, impact, and shear strength, electrical properties, and corrosion resistance. This article discusses commercial forms, family characteristics, properties and applications of the following advanced thermoplastics: homopolymer and copolymer acetals, fluoropolymers, ionomers, polyamides, polyamide-imides, polyarylates, polyketones, polyaryl sulfones, polybutylene terephthalates, polycarbonates, polyether-imides, polyether sulfones, polyethylene terephthalates, thermoplastic polyimides, liquid crystal polymers, polyphenylene ether blends, polyphenylene sulfides, and polysulfones.