Skip Nav Destination
Close Modal
Search Results for
dry hydrogen chloride
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 478 Search Results for
dry hydrogen chloride
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004181
EISBN: 978-1-62708-184-9
.... The article illustrates the effect of HCl on nonmetallic materials such as natural rubber, neoprene, thermoplastics, and reinforced thermoset plastics. It also tabulates the corrosion of various metals in dry hydrogen chloride. carbon steel chlorine zirconium alloy steel austenitic stainless steel...
Abstract
Hydrochloric acid (HCl) may contain traces of impurities that will change the aggressiveness of the solution. This article discusses the effects of impurities such as fluorides, ferric salts, cupric salts, chlorine, and organic solvents, in HCl. It describes the corrosion resistance of various metals and alloys in HCl, including carbon and alloy steels, austenitic stainless steels, standard ferritic stainless steels, nickel and nickel alloys, copper and copper alloys, corrosion-resistant cast iron, zirconium, titanium and titanium alloys, tantalum and its alloys, and noble metals. The article illustrates the effect of HCl on nonmetallic materials such as natural rubber, neoprene, thermoplastics, and reinforced thermoset plastics. It also tabulates the corrosion of various metals in dry hydrogen chloride.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003829
EISBN: 978-1-62708-183-2
.../yr mils/yr Acetylene, dry Room Risk of explosion Ammonia, pure 190 375 <0.05 2 Ammonium chloride, vapor 200 390 Attacked Carbon dioxide, pure Room <0.05 2 Carbon monoxide, pure 300 570 <0.05 2 Hydrogen, pure 700 1290 <0.05 2 Hydrogen chloride...
Abstract
This article characterizes the corrosion resistance of precious metals, namely, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold. It provides a discussion on the general fabricability; atomic, structural, physical, and mechanical properties; oxidation and corrosion resistance; and corrosion applications of these precious metals. The article also tabulates the corrosion rates of these precious metals in corrosive environment, namely, acids, salts, and halogens.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004204
EISBN: 978-1-62708-184-9
.... Nickel is used for containing very reactive chlorides, such as phosphorus oxychloride, phosphorus trichloride, nitrosyl chloride, benzyl chloride, and benzoyl chloride. Pure nickel resists anhydrous chlorine, anhydrous hydrogen chloride, phenol, and bromine. Nickel-Copper Alloys Alloy 400 (UNS...
Abstract
This article discusses the materials of construction found in pharmaceutical production facilities. The materials discussed are different stainless steels, nickel and nickel-base alloys, titanium, zirconium, impervious graphite, fluoropolymers, and glass-lined steel. The article describes the three primary causes of failure in the manufacture of pharmaceuticals: embedded iron, failures of glass linings, and corrosion under thermal insulation.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004104
EISBN: 978-1-62708-184-9
... in the presence of chlorides found in airborne salts creates the potential for significant atmospheric corrosion activity on all exposed metal surfaces. In addition to marine exposures, plant processes and sanitary sewers are likely to generate airborne substances, such as hydrogen sulfide, that will also...
Abstract
This article provides information on predesign surveys and the various testing procedures associated with wastewater treatment plants. These include soil testing, atmospheric testing, and hydrogen sulfide testing. The primary parameters that influence the production of sulfides within the piping system that transports the wastewater to the treatment facility are discussed. The article describes the corrosion performance of various materials in the soil, fluid, and atmospheric exposures. These include concrete, steel, ductile iron, aluminum, copper, brass, stainless steel, and coatings used for wastewater facilities.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
... Hydrogen sulfide Dry Room E Saturated H 2 O Room E Hyposulfite soda (hypo) … … E Lactic acid salts … Room E Lead acetate Saturated Room E Magnesium carbonate … … E Magnesium chloride (still) 1–5 Room to hot E Magnesium chloride 5–40 Room to boiling E Magnesium...
Abstract
Tantalum is one of the most versatile corrosion-resistant metals known. The outstanding corrosion resistance and inertness of tantalum are attributed to a very thin, impervious, protective oxide film that forms on exposure of the metal to slightly anodic or oxidizing conditions. This article provides a discussion on the mechanism of corrosion resistance and on the behavior of tantalum in different corrosive environments, namely, acids; salts; organic compounds; reagents, foods, and pharmaceuticals; body fluids and tissues; and gases. It contains several tables that summarize the effects of acids, salts, and miscellaneous corrosive reagents on tantalum and applications for tantalum equipment in chemical, pharmaceutical, and other industries. Finally, the article presents a discussion on hydrogen embrittlement, the galvanic effects, and cathodic protection of tantalum and describes the corrosion resistance of different types of tantalum-base alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
... to the acid completely inhibited both reactions. Since then, SCC has been demonstrated in hot dry sodium chloride, methanol, hydrochloric acid solutions, seawater, chlorinated solvents, nitrogen tetroxide, mercury, and cadmium. One of the important variables affecting susceptibility to SCC is alloy...
Abstract
This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004220
EISBN: 978-1-62708-184-9
... but not exposed to chloride (includes locations where the concrete will be occasionally wetted, such as parking garages, waterfront structures, and areas with potential moisture condensation) 0.15 Aboveground building construction where the concrete will stay dry No limit A compounding factor...
Abstract
This article discusses the generic situation of steel reacting with the environments found in structures. Two environments are specifically discussed: atmospheric and cementitious. The article describes the utility of different corrosion protection methods for atmospheric corrosion and cementitious systems. It presents examples of problems that have arisen in the corrosion performance of steel.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004211
EISBN: 978-1-62708-184-9
... and nonferrous alloys used in petroleum refining and petrochemical applications. The article reviews the mechanical properties, fabricability, and corrosion resistance of refinery steels. It describes low- and high-temperature corrosion, hydrogen embrittlement, and cracking such as stress-corrosion, sulfide...
Abstract
This article presents the primary considerations and mechanisms for corrosion and explains how they are involved in the selection of materials for process equipment in refineries and petrochemical plants. It discusses the material selection criteria for a number of ferrous and nonferrous alloys used in petroleum refining and petrochemical applications. The article reviews the mechanical properties, fabricability, and corrosion resistance of refinery steels. It describes low- and high-temperature corrosion, hydrogen embrittlement, and cracking such as stress-corrosion, sulfide stress, and stress-oriented hydrogen-induced cracking. The article considers hydrogen attack, corrosion fatigue, and liquid metal embrittlement and the methods of combating them. It explains the causes of velocity-accelerated corrosion and erosion-corrosion. The article summarizes some corrective measures that can be implemented to control corrosion. The applicable standards for materials used in corrosive service conditions in upstream and downstream petroleum service are presented in a tabular form.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006635
EISBN: 978-1-62708-213-6
... sulfuric acid Evolution of hydrogen fluoride dimer 2. Calcium chloride White slimy precipitate of calcium fluoride, slightly soluble in dilute hydrochloric acid 3. Iron(III) chloride White precipitate Special tests: HF etches glass (only visible after drying) Formates, HCOO – 1...
Abstract
This article presents a summary of the chemical fundamentals, general techniques, limitations, and applications of chemical spot testing as well as a brief overview of innovations and specialized applications. A list of selected reagents, including abbreviated instructions for preparing the reagent solution(s), for performing the spot test, and for interpreting the results, is also included. The article discusses two specialized applications of qualitative analysis, namely illicit drug identification and spacecraft drinking water quality testing. It also contains tables listing common presumptive tests for detecting anions and cations in aqueous solution.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003764
EISBN: 978-1-62708-177-1
...; may self-ignite Gold (III) chloride AuCl 3 … Crystalline; density, 3.9 g/cm 3 Hexamethylenetetramine C 6 H 12 N 4 Slightly flammable, irritating Crystalline: white; hygroscopic Hydrogen H 2 Highly flammable Gaseous (is liquid below −253 °C, or −423 °F); density, 0.03 g/cm 3...
Abstract
This article is a comprehensive collection of tables listing: dangerous reactions of chemicals and designations of etchants; chemical-polishing solutions for irons and steels and nonferrous materials; attack-polishing solutions, macrostructure etchants for iron and steel; and major microstructure etchants for common phases and constituents in ferrous materials.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006070
EISBN: 978-1-62708-172-6
... earlier, both anions and cations are equally important in osmotic blistering. also have an important effect in causing corrosion in addition to providing ions to complete the corrosion circuit. For example, hydrogen chloride (HCl) is a strong and corrosive acid, as is ferric chloride (FeCl 3 ), compared...
Abstract
Soluble salts on a surface can affect a steel substrate or coating in two principal ways: corrosion acceleration and osmotic blistering. This article provides a detailed discussion on the mechanisms for each of these deleterious effects. It describes the most detrimental anions with regard to corrosion, namely, chlorides, sulfates, and nitrates, and provides information on recognition and testing of the presence of soluble salts. The salt-measurement techniques and commercially available equipment are also described. The article provides information on research regarding tolerable levels of salts beneath coatings. The information shows that there appears to be a threshold limit to the salt contamination that a given coating/coating system can tolerate in a given environment.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... and resistant to corrosion by hydrogen sulfide at temperatures to 400 °C (750 °F). Chloride concentration in the plant was very low; however, postweld stress relief was used to minimize residual stresses and to avoid the possibility of SCC. A less expensive alternative would have been to use a 5% Cr steel...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... with water vapor is much faster than that with dry air or oxygen and has been reviewed by numerous authors ( Ref 22 , 26 , 42 , 43 ). In the absence of oxygen, uranium reacts in the presence of water vapor to form UO 2+ x , where x is between 0 and 0.1, and hydrogen. Hydrogen is formed as atomic...
Abstract
This article reviews general corrosion of uranium and its alloys under atmospheric and aqueous exposure as well as with gaseous environments. It describes the dependence of uranium and uranium alloy corrosion on microstructure, alloying, solution chemistry, and temperature as well as galvanic interactions between uranium, its alloys, and other metals. The article provides information on the atmospheric corrosion of uranium based on oxidation in dry air or oxygen, water vapor, and oxygen-water vapor mixtures depending upon particular storage conditions. The mechanism and morphology of hydride corrosion of uranium are discussed. The article provides information on environmentally assisted cracking, protective coatings, and surface modification of uranium and its alloys. It also summarizes the environmental, safety, and health considerations for their use.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004137
EISBN: 978-1-62708-184-9
... Gas Saturation The dry flue gas is not severely corrosive. However, when the gas reaches its dewpoint, sulfuric (H 2 SO 4 ) and sulfurous (H 2 SO 3 ) acids can form. In addition, hydrochloric acid (HCl) is produced because of the presence of hydrogen chloride (formed at the elevated temperatures...
Abstract
Corrosion problems and materials selection for emissions control equipment can be difficult because of varied corrosive compounds present and the severe environments encountered. This article discusses the selection of materials for construction of flue gas desulfurization systems. It addresses the problems associated with materials for incinerator off-gas treatment equipment. The off-gases can be classified according to their corrosiveness as: industrial chemical, hospital, municipal solid, and sewage sludge. The article provides information on the selection of materials for the three most common types of dust collection equipment used in bulk solids processing, namely, fabric filters, electrostatic precipitators, and wet scrubbers. It also discusses a wide variety of corrosion problems encountered in chemical and pharmaceutical industries.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004142
EISBN: 978-1-62708-184-9
... soil through which groundwater flows freely, to seawater with high salt concentrations, or to a polluted harbor contaminated by foul-smelling hydrogen sulfide. The corrosion rate of buried metals is extremely variable, ranging from rapid to negligible, depending on both the metal and its burial...
Abstract
The corrosion processes of metals during burial are affected by environmental pollutants, other archaeological material, geography, microorganisms in the soil, vegetation, land use, soil chemistry, soil physical properties, and the presence or absence of water and air. This article discusses the key environmental variables that affect the corrosion of buried metal artifacts. These include water (including dissolved salts and gases), sulfate-reducing bacteria, pH (acidity), and potential (oxidizing or reducing capacity). The article contains tables that list some corrosion products identified on archaeological tin and pewter, lead, iron alloys, silver alloys, and copper alloys. It also discusses the corrosion problems after excavation and the techniques followed by archaeological department for conserving metal artifacts.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004183
EISBN: 978-1-62708-184-9
... ( Ref 12 ). Because iron is attacked less rapidly by hydrogen chloride than chlorine, the presence of hydrogen chloride in dry chlorine should have little effect on iron chlorination rates. In practice, however, the use of steel is avoided where moisture may be present. Table 1 indicates corrosion...
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003822
EISBN: 978-1-62708-183-2
... and embrittlement should simulate conditions expected in service. Test exposures in hydrogen gas atmospheres must duplicate exact gas chemistry, particularly with respect to water and oxygen content. Mere traces of moisture, for example, will effectively inhibit hydrogen absorption by titanium in dry hydrogen gas...
Abstract
Titanium alloys are often used in highly corrosive environments because they are better suited than most other materials. The excellent corrosion resistance is the result of naturally occurring surface oxide films that are stable, uniform, and adherent. This article offers explanations and insights on the most common forms of corrosion observed with titanium alloys, including general corrosion, crevice corrosion, anodic pitting, hydrogen damage, stress-corrosion cracking, galvanic corrosion, corrosion fatigue, and erosion-corrosion. It also provides practical strategies for expanding the useful application range for titanium and includes a comprehensive overview of available corrosion data.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003702
EISBN: 978-1-62708-182-5
... catalyzed resin coatings exfoliation aluminum-copper alloys erosion corrosion cavitation fretting economic design corrosion control stress-corrosion cracking hydrogen damage MATERIALS SELECTION AND DESIGN are of equal importance in achieving the desired performance and life expectancy...
Abstract
This article outlines the processes by which materials are selected to prevent or control localized corrosion, galvanic corrosion, and intergranular corrosion. It reviews the operating conditions and the design of candidate materials for material selection. The article discusses various corrosion-resistant materials, including ferrous and nonferrous metals and alloys, thermoplastics, reinforced thermosetting plastics, nonmetallic linings, glass, carbon and graphite, and catalyzed resin coatings. It examines an unusual form of intergranular corrosion known as exfoliation, which occurs in aluminum-copper alloys. The article also describes three types of erosion-corrosion: liquid erosion-corrosion, cavitation, and fretting. It concludes with information on the various factors to be considered for material selection, including minimum cost or economic design, minimum corrosion, minimum investment, and minimum maintenance.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004185
EISBN: 978-1-62708-184-9
.... Hydrogen Sulfide Attack Most high-temperature steels are attacked by hydrogen sulfide (H 2 S) in the gas stream in partial oxidation plants. The use of austenitic stainless steels eliminates this problem, but stress relief of welds is advised in these plants to avoid SCC by chlorides sometimes present...
Abstract
Ammonia and ammonium hydroxide are not particularly corrosive in themselves, but corrosion problems can arise with specific materials, particularly when contaminants are present. This article discusses the corrosion resistance of materials used for the manufacture, handling, and storage of ammonia. These materials include aluminum alloys, iron and steel, stainless steels, nickel and its alloys, copper and its alloys, titanium and its alloys, zirconium and its alloys, niobium, tantalum, and nonmetallic materials.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006073
EISBN: 978-1-62708-172-6
... Abstract This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing...
Abstract
This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing-internal stress, and vibration-external stress; and (4) biological influences such as microbiological, mildew, and marine fouling.
1