1-20 of 422 Search Results for

drawing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009006
EISBN: 978-1-62708-185-6
... Abstract Workability is the ability of the workpiece metal to undergo extrusion or drawing without fracture or defect development. This article describes the limits of workability in extrusion and drawing in terms of fracture and flaw development and presents some comments on fracture...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004008
EISBN: 978-1-62708-185-6
... Abstract The drawing process, one of the oldest metal forming operations, allows excellent surface finishes and closely controlled dimensions to be obtained in long products that have constant cross sections. This article discusses the basic mechanics and preparation steps of drawing. It...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004031
EISBN: 978-1-62708-185-6
... Abstract This article is a comprehensive collection of terms related to metalworking operations that produce shapes from forging, extrusion, drawing, and rolling operations. drawing extrusion forging rolling ...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004013
EISBN: 978-1-62708-185-6
... Abstract Coextrusion is defined as the simultaneous extrusion of two or more metals to form an integral product that can be carried out using conventional extrusion or drawing equipment at a temperature appropriate to the metal system being formed. This article discusses the applications...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004030
EISBN: 978-1-62708-185-6
... article also provides formulas for flat rolling, conical-die extrusion, wire drawing, deep drawing of cups from sheet metal, and bending, and formulas for anisotropic sheet materials. bending conical-die extrusion deep drawing flat rolling sheet metal forming strain strain rate stress...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004035
EISBN: 978-1-62708-185-6
... unit (primarily millimeters), that defines a geometric characteristic of an object, such as a forging. It is indicated on engineering drawings in conjunction with lines, symbols, and notes. For forgings, dimensions describe the overall length; width and height; the location and amount of draft; and the...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004007
EISBN: 978-1-62708-185-6
... that utilize the beneficial aspects of a negative mean stress on formability, such as extrusion, wire drawing, rolling, or forging. In such cases, the negative mean stress can be treated as a hydrostatic pressure that is imparted by details of the process ( Ref 1 , 2 ). More direct utilization of...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... elastic deformation; therefore, elastic recovery after deformation is negligible. Examples of generic bulk-forming processes are extrusion, forging, rolling, and drawing. Specific bulk-forming processes are listed in Table 1 . Table 1 Classification of bulk (massive) forming processes...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009004
EISBN: 978-1-62708-185-6
... in the material during processing. In the spectrum of processes (extrusion, rolling, forging, and wire drawing), the average hydrostatic stress becomes increasingly tensile, and the strain to fracture progressively decreases. Within each of these processes, however, the stress and strain states can...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004021
EISBN: 978-1-62708-185-6
... is not always intuitive. Process simulation is a powerful tool in the prediction of material flow, especially in 3-D processes. One such process is shape drawing. When drawing a shape, there are several potential defects. These include die underfill, bending, ductile fracture, peeling at the die...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003972
EISBN: 978-1-62708-185-6
... selection of deformation process. Parts having a uniform cross section along one dimension can be produced by rolling (e.g., sheet metal, bars, structural I-beam), drawing (e.g., copper wire), or extrusion (e.g., aluminum window frame). Such parts can also be cut along the cross section perpendicular to the...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004039
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004015
EISBN: 978-1-62708-185-6
... of wavelengths, including ultraviolet and infrared. Good ductility and workability (due to the fcc structure) for fabrication by rolling, stamping, drawing, spinning, roll forming, forging, and extrusion. Cryogenic toughness, as the fcc structure does not become brittle at low temperatures...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003999
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003981
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003988
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009005
EISBN: 978-1-62708-185-6
... centerbursts are discussed in the article “Workability and Process Design in Extrusion and Wire Drawing” in this Handbook volume inasmuch as these are the principal operations in which these defects occur. Workability Tests for Shear Banding during Cold Forging. Shear bands are defects that may be found in...