Skip Nav Destination
Close Modal
Search Results for
dispersed-phase toughening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 97
Search Results for dispersed-phase toughening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 3 Dispersed-phase-toughened carbon fiber composite material that was sectioned at an oblique angle to obtain a larger view of the interlayer region. Large, irregular ases, with some phases spherical and hollow, were found in the interlayer area and extended into the intraply area
More
Image
Published: 01 December 2004
Fig. 4 Dispersed-phase-toughened carbon fiber composite material that was sectioned at an oblique angle to obtain a larger view of the interlayer region. A complex morphology was revealed, which was also present in the intraply area. Ultrathin section. Transmitted light, differential
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009080
EISBN: 978-1-62708-177-1
... Abstract This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation...
Abstract
This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation and double-pass impregnation. The article illustrates reflected-light optical microscopy techniques to evaluate the morphology of thermoplastic materials for determining the material quality and correlating key microstructural features with material performance.
Image
Published: 01 December 2004
Fig. 11 Micrograph of crack propagation through a dispersed-phase, rubber-toughened thermoset-matrix composite after impact. Transmitted-light phase contrast, 40× objective
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
... of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
... or monoclinic symmetry. ZTA is a material of interest primarily because it has a significant higher strength and fracture toughness than alumina. Fig. 4 Scanning electron micrograph of high-purity, zirconia-toughened alumina showing dispersed zirconia phase (white) within an alumina matrix...
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Image
Published: 01 January 1990
Fig. 4 Scanning electron micrograph of high-purity, zirconia-toughened alumina showing dispersed zirconia phase (white) within an alumina matrix
More
Image
Published: 01 January 2001
Fig. 6 Scanning electron micrograph of high-purity zirconia-toughened alumina (ZTA) showing dispersed ZrO 2 phase (white) within an Al 2 O 3 matrix
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002418
EISBN: 978-1-62708-193-1
... networks, and a ductile matrix with a dispersed elastic phase. The first two represent most metal-toughened ceramics and intermetallics. The latter includes most metal-matrix composites and rubber-toughened polymers. An important difference between the first two microstructures and the third concerns...
Abstract
The design of structural components with nominally brittle materials is largely determined by their elastic moduli, density, and tensile strength. This article discusses some of the factors involved in the design and reliability through considerations of toughness and ductility of nominally brittle materials. It describes toughening by various bridging mechanisms, as well as process zone effects and their interaction with the bridging rupture zone. The article explains the phenomena that give rise to exceptional toughness and notch-insensitive mechanical behavior. It provides a schematic illustration of a basic cell model to characterize the inelastic strains that occur in ceramic-matrix composites and their dependence on the interface friction.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
... the composition of the phase. For example, if the thermoset is toughened with polyetherimide (PEI), which creates a dispersed phase, a good solvent to etch or dissolve the PEI phase is methylene chloride ( Ref 17 ). After the sample is polished, it can be placed face down in the solvent for 2 to 24 hours...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003486
EISBN: 978-1-62708-195-5
... micrograph of high-purity zirconia-toughened alumina (ZTA) showing dispersed ZrO 2 phase (white) within an Al 2 O 3 matrix The microstructure and subsequent mechanical properties can be tailored to specific applications. Higher ZrO 2 contents lead to increased fracture toughness and strength values...
Abstract
The applications of discontinuously reinforced ceramic-matrix composites (CMCs) fall into four major categories, namely, cutting tool inserts; wear-resistant parts; aerospace and military applications; and other industrial applications, including engines and energy-related applications. This article provides examples for these four categories, with an emphasis on those applications/materials that have achieved commercial viability. The applications for continuous fiber ceramic composites are also summarized.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009082
EISBN: 978-1-62708-177-1
... the matrix but are also found clustered in many areas. With higher magnification ( Fig. 6 ) and the use of bright-field illumination, the bamboo fibers are found to be irregular in shape. Also in this micrograph, the appearance of a dispersed phase is indicated by light, circular areas. Other features...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This article focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... Overview of Composites A composite material is one that has a chemically and/or physically distinct phase distributed within a continuous phase ( Ref 2 ). The characteristics of the composite are generally different from those of either component. The continuous phase is the matrix phase...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002126
EISBN: 978-1-62708-188-7
... 1960s when Japanese researchers added titanium carbide (TiC) to an Al 2 O 3 matrix. This alloyed ceramic is a dispersion-strengthened ceramic that contains 25 to 40 vol% TiC as a dispersed particulate phase. Alumina-titanium carbide is often called a black ceramic composite due to its color, which...
Abstract
Ceramics are materials with the potential for a wide range of high-speed finishing operations and for high removal rate machining of difficult-to-machine materials. This article describes the production process, composition, properties, and applications of ceramic tool materials. It presents a comprehensive discussion on the properties and composition of alumina-base tool materials, including alumina and titanium carbide, alumina-zirconia, and silicon carbide whisker reinforced alumina, and silicon nitride base tool materials.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003362
EISBN: 978-1-62708-195-5
... increase in resin viscosity as rubber content increases. They can be dissolved directly into the epoxy or addition can be facilitated with a solvent that is later removed. In all cases, the rubber must phase out of solution during cure in order to effectively toughen the resin without sacrificing modulus...
Abstract
This article discusses the three basic elements of an epoxy resin formulation that must be understood when selecting a thermoset system. These include base resins, epoxy resin curatives, and modifiers. The article provides examples of epoxy resin formulations that illustrate how raw materials are combined to tailor a formulation to a specific application. It concludes with a discussion on general guidelines for the safe handling of epoxy resins and their associated products.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... such as in the body, toughening effects are gradually lost, accompanying roughness in the surface. This LTD will be enhanced under stress. With greater Y 2 O 3 contents, nearly 100% of the zirconia is in the tetragonal symmetry, and the average grain size is approximately 0.4 to 0.8 µm. The tetragonal phase...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
... of transformation toughening, since the tetragonal phase needs to be stabilized until the stress needed to induce the transformation is created by the propagating crack. Additions of calcium oxide, magnesium oxide, and yttrium oxide can stabilize tetragonal precipitates of zirconia in a cubic zirconia matrix...
Abstract
Martensite is a metastable structure that forms during athermal (nonisothermal) conditions. This article reviews the crystallographic theory, morphologies, orientation relationships, habit plane, and transformation temperature of ferrous martensite microstructures. It examines the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003047
EISBN: 978-1-62708-200-6
... fillers, adhesion promoters, tackifiers, and tougheners. It gives a short note on functions of primers and primerless bonding. Applications of adhesives in automotive, aerospace, electronics, electrical, medical, sports, and construction sectors are also described. Finally, the article describes the steps...
Abstract
This article begins with an overview of the fundamentals of adhesive technology, including functions, limitations, adhesive joint types, and the key factors in the selection of adhesives, including application, type of joint, process limitation, mechanical requirement, and service conditions. It then focuses on the characteristics, types, and properties of the five groups of adhesives, such as structural, hot melt, pressure sensitive, water based, ultraviolet, and electron beam cured adhesives. The article also discusses the functions and applications of adhesive modifiers, including fillers, adhesion promoters, tackifiers, and tougheners. It gives a short note on functions of primers and primerless bonding. Applications of adhesives in automotive, aerospace, electronics, electrical, medical, sports, and construction sectors are also described. Finally, the article describes the steps in adhesive bonding, including storage and handling of adhesives, bonding preparation, adhesive application, tooling, and curing.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003795
EISBN: 978-1-62708-177-1
... from the strain-induced transformation and microcrack formation ( Ref 16 ). Fig. 17 Scanning electron micrograph of a zirconia toughened ceramic (ZTC), thermally etched in air at 1300 °C (2730 °F). Lighter, tetragonal ZrO 2 grains are dispersed in the Al 2 O 3 matrix. The parallel arrays...
Abstract
Microstructural analysis reveals many important details about the qualities and capabilities of high-performance ceramics. This article explains how to prepare ceramic samples for imaging and the imaging technologies normally used. It describes sectioning, mounting, grinding, and polishing as well as ceramographic etching. It discusses common imaging approaches, including scanning electron microscopy and thin-section polarized light techniques, a type of optical microscopy. The article also addresses microstructural classification, examining detailed micrographs from samples of aluminum oxide, zirconium dioxide, aluminum nitride, silicon carbide, and piezoelectric ceramics.
1