1-20 of 180 Search Results for

dislocations

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... dislocation defects stacking faults X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections, such as dislocations, inclusions/precipitates, stacking faults, growth-sector...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005433
EISBN: 978-1-62708-196-2
... and classical physical constitutive equations. The article also reviews the accommodation mechanisms that are divided into two major groups, namely, diffusional accommodation and accommodation by dislocations. constitutive model superplastic flow superplasticity phenomenological constitutive...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
..., distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations. cellular automaton model static recrystallization dynamic recrystallization microstructure dislocation...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004020
EISBN: 978-1-62708-185-6
..., followed by the models of constitutive behavior. It provides a discussion on creep mechanisms involving dislocation and diffusional flow, such as the Nabarro-Herring creep and the Coble creep. The equations for the several creep rates are also presented. Research on the mechanism of the superplastic flow...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
..., zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It...
Book Chapter

By Sammy Tin
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... constitutive description of the strain-rate-dependent behavior of engineering alloys must take into account the intrinsic causes of damage accumulation in the form of cavitation, dislocation evolution, and grain-boundary sliding. Moreover, because creep occurs at elevated temperatures, seldom does the...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005413
EISBN: 978-1-62708-196-2
..., can be established only under the supposition that the crystal does not yield first. The yield stress is the stress level where dislocations are forced to move and to produce a plastic shear strain by slip of lattice planes in certain lattice directions. The yield strength of a material depends on...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005412
EISBN: 978-1-62708-196-2
... aforementioned nine crystallographic parameters. However, some external stress may shift the interface out of such a local energy minimum: stress-induced change of thickness and shift parallel to the interface induced by interaction of the interface with dislocations ( Ref 8 , Ref 9 Ref 10 ), vacancies...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... PLASTIC DEFORMATION, or the permanent distortion under applied stress, can occur in metals from various mechanisms, such as: Slip from the motion of dislocations (line imperfections) in the crystal structure Twinning, where the crystallographic orientation changes significantly in the region of...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004019
EISBN: 978-1-62708-185-6
... lower energy level. All three processes involve diffusion and thus depend on thermal activation to cause rearrangement of dislocations and grain boundaries. The mechanisms of recovery and recrystallization also depend on the extent of plastic deformation (either during hot working or by cold work prior...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... most important defects are line defects known as dislocations. As deformation increases, the deformation resistance increases due to increasing dislocation content. However, the dislocation density does not increase without limit because of the occurrence of dynamic recovery and dynamic...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006446
EISBN: 978-1-62708-190-0
... microscopic features. These range from increasing dislocation density to clusters of tight microcracks whose crack opening is smaller than the particle displacement produced by the interrogating ultrasonic wave and by additional elastic deformation produced by quasi-static, low- and high-frequency modulation...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005403
EISBN: 978-1-62708-196-2
... during further heat treatment. In the initial fully annealed state ( Fig. 1a ), the dislocation density of the material is very low (ρ ≈ 0.01 μm/μm 3 ). Strain hardening makes it grow to 10 4 μm/μm 3 ( Fig. 1b ). Since it was formerly believed that metals lost their crystalline character after large...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000615
EISBN: 978-1-62708-181-8
... coalescence at no exposure to channel fracture in the highly irradiated condition. At the high exposure level, all dislocation activity was localized in a planar slip band, and cracking eventually initiated and propagated along the resultant dislocation channels, causing fracture toughness to fall off. (J.E...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
...-crystal array. A B atom in either substitutional or interstitial solid solution is another common form of point defect. There are also many close pairs and clusters of point defects, such as divacancies, trivacancies, and interstitial-vacancy pairs. Dislocations are line defects that exist in...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006284
EISBN: 978-1-62708-169-6
... expended mechanical energy being stored within the specimen. Grains are deformed and move relative to one another. The effects of the stored energy are present as point defects, dislocations, and stacking faults. Dislocations—flaws in the linear array of atoms—are generated and become rearranged due to...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
...-fatigue) strength, wear resistance (for bearing surfaces), and good fracture resistance. High strength of metals is favored by fine grain size and other microstructural features (i.e., crystal lattice defects, dislocations, twins, stacking faults, second-phase particles). Selection of processing to...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
..., which is important not only for the working forces but also for the product properties. During a deformation pass, the flow stress changes with strain as a result of athermal work-hardening processes that increase the dislocation density, and opposing thermally activated softening processes, which cause...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005459
EISBN: 978-1-62708-196-2
... (dislocation generation, recovery, nucleation, grain-boundary migration) as well as the precipitation of secondary phases operate at a microscopic scale. However, their behavior is generally averaged over entire grains in order to deal with them in a mesoscopic fashion. This requires the definition of overall...