Skip Nav Destination
Close Modal
Search Results for
dislocation structure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 554 Search Results for
dislocation structure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 35 Uniform dislocation structure in iron deformed 14% at −195 °C (–320 °F). The dislocations are primarily of the screw type. Thin-foil electron micrograph. Original magnification 40,000×
More
Image
Published: 01 December 2004
Fig. 14 Parameters in a large strain dislocation structure containing sheets of extended lamellar boundaries (LBs) with stippled low-angle (bamboo) incidental dislocation boundaries (IDBs) bridging between them. High-angle LBs are represented by heavy line weight and medium-angle LBs by medium
More
Image
Published: 01 January 1996
Fig. 6 Transmission electron micrograph showing the dislocation structure of persistent slip bands in the surface grain of low-carbon steel
More
Image
Published: 01 January 1996
Fig. 9 Surface relief and underlying dislocation structure in a section perpendicular to the specimen surface and the primary slip plane in copper single crystal. D, electrodeposited layer; S, specimen TEM
More
Image
Published: 01 January 1996
Fig. 13 Surface relief microcracks and dislocation structure in surface layer. Section perpendicular to the specimen surface and the primary slip plane in copper single crystal. D, electrodeposited layer; S, specimen; M, microcracks
More
Image
Published: 01 January 1996
Image
Published: 01 January 1996
Fig. 15 Surface relief and underlying dislocation structure in a section perpendicular to the specimen surface and the primary slip plane in α-brass single crystal (Cu-31wt%Zn). D, electrodeposited layer; S, specimen
More
Image
Published: 01 December 2004
Fig. 6 Typical cell block dislocation structures composed of long geometrically necessary boundaries (GNBs) (i.e., dense dislocation walls, or DDWs, and microbands, or MBs) and incidental dislocation boundaries (IDBs) observed by TEM following low to medium deformation. (a) Aluminum (99.996
More
Image
Published: 01 January 1996
Fig. 5 Summary of near-surface dislocation structures as a function of amplitude (expressed here through number of cyles to fracture, N f ) and stacking-fault energy, γ. This summary covers materials that were well annealed before cycling.
More
Image
Published: 01 January 1986
Fig. 71 Dislocation cell structure developed by cold rolling ETP copper. Thin foil TEM specimen
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002355
EISBN: 978-1-62708-193-1
... Abstract This article presents an overview of fatigue crack nucleation from the point of view of the material microstructure and its evolution during cycling. It describes the sites of microcrack nucleation at the free surfaces. The article discusses the relation of dislocation structures...
Abstract
This article presents an overview of fatigue crack nucleation from the point of view of the material microstructure and its evolution during cycling. It describes the sites of microcrack nucleation at the free surfaces. The article discusses the relation of dislocation structures and surface relief and reviews the mechanisms of crack nucleation. The damage of material due to crack nucleation, the extent (in terms of the number of cycles) of the nucleation stage, and the factors influencing crack nucleation are discussed.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
..., zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Image
Published: 01 November 2010
(tilt boundary). (b) Relationship between the coincidence site lattice and the primary dislocation structure at a grain boundary. If two identical, interlocking lattices (α) are rotated symmetrically away from each other about an axis perpendicular to the plane of view (β), a coincidence site lattice
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003742
EISBN: 978-1-62708-177-1
... 50 years ( Fig. 1b , Ref 2 ). Three notable trends in microscopy are: (a) the ever-increasing resolution in the images so that smaller and smaller features such as dislocations and atomic arrangements can be identified and associated with larger scale structures; (b) the ability to see through...
Abstract
Microstructure and crystallographic texture are the key material features used in the continuous endeavor to relate the processing of a metal with its final properties. This article emphasizes several aspects of deformation microstructures, namely, microstructural evolution, dislocation boundaries, and macroscopic properties. It discusses three different microstructural types: cell blocks, TL blocks, and equiaxed subgrains. The article also emphasizes the behavior of metals and single-phase alloys processed under plastic deformation (dislocation slip) conditions. It provides information on the microstructural parameters, measurement techniques, and microstructural relationships, which assist in predicting the mechanical properties and recrystallization behavior of materials. The article concludes with an analysis of the general relationship between the microstructural parameters and properties.
Image
Published: 01 January 2005
Fig. 14 Dense tangles of dislocations forming a cell structure in iron that was deformed at room temperature to 9% strain (a) and to 20% strain (b). Note that the average spacing between cell walls decreased as strain was increased. Thin-foil electron micrographs. Original magnification 20,000×
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... dislocation density enhances the rate of dynamic recovery, leading to a reduction in dislocation density and to the development of “cell” or “subgrain” structures, as shown in Fig. 3 . At strains less than ε m ( Fig. 2a ) these structures may be elongated ( Fig. 3a ) and are variously referred...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005574
EISBN: 978-1-62708-174-0
... the forging required to displace contaminants, the bondline can be characterized as a highly dislocated, high-energy structure. Improvements in weld performance can be made by decomposing this structure and reducing the residual bondline strain energy. Decomposition can occur either by recovery...
Abstract
This article discusses three distinct mechanisms of bonding for solid-state (forge) welding processes, namely, contaminant displacement/interatomic bonding, dissociation of retained oxides, and decomposition of the interfacial structure. It explains the processes that can be characterized as having two stages: heating and forging. The article also includes a table that illustrates weld strengths as a function of annealing temperature for a range of materials.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
... pretreatment and the strengthening effect of a second phase are dealt with in the subsequent sections “Cyclic Deformation in Structural Alloys” and “Variables and Modeling,” respectively, in this article. Dislocation Arrangement of Cyclic Saturation Factors Determining the Slip Character of a Material...
Abstract
This article discusses the microstructural processes that take place during plastic deformation and presents a plain phenomenological and general description of the cyclic stress-strain (CSS) response. It emphasizes the microstructural aspects of cyclic loading on single-phase materials tested in initially soft, dislocation-poor conditions resulting from a prior heat treatment. The article discusses deformation-induced phase transformations in austenitic stainless steels and commercial age-hardened aluminum alloys. It describes the interaction of dislocations and the strengthening of second-phase particles. The article also provides a description of the framework used to model the CSS response on a physical basis.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... of dynamic microstructural variables, such as material composition, grain size, dislocation density, precipitate size, and morphology, that evolve during the course of deformation. Thus, the time-dependent behavior of the structure parameter is also dependent on the stress, temperature, and the current...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
1