Skip Nav Destination
Close Modal
Search Results for
dislocation defects
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 406 Search Results for
dislocation defects
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 2 Deformation in a crystal lattice from slip of line defect (dislocation) from a position in (a) to the edge in (c). The vector b is the Burgers vector, which is defined as the unit displacement of a dislocation.
More
Image
Published: 01 December 2009
Fig. 8 Martensitic nucleation by dislocation dissociation. (a) Nucleating defect. (b) Dissociation of defect to produce a /18 [112] partial dislocations. (c) Simultaneous generation of lattice dislocations. Source: Ref 48
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... dislocation defects stacking faults Overview Introduction—History and Development Trends X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections, such as dislocations, inclusions...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
..., trivacancies, and interstitial-vacancy pairs. Line Defects Dislocations are line defects that exist in all real crystals. An edge dislocation, which is the edge of an incomplete plane of atoms within a crystal, is represented in cross section in Fig. 9 . In this illustration, the incomplete plane...
Abstract
Crystal structure is the arrangement of atoms or molecules in the solid state that involves consideration of defects, or abnormalities, in idealized atomic/molecular arrangements. The three-dimensional aggregation of unit cells in the crystal forms a space lattice or Bravais lattice. This article provides a brief review of the terms and basic concepts associated with crystal structures. It also discusses some of the significant defects obstructing plastic flow in real crystals, namely point defects, line defects, stacking faults, twins, and cold work. Several tables in the article provide information on the crystal structures and lattice parameters of allotropes of metallic elements.
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 12 (a) Schematic illustration of interphase between body-centered cubic (bcc) (β) and hexagonal close-packed (hcp) (α) interface, exhibiting both structural ledges (disconnections) and misfit dislocation arrays. The interface is decorated by arrays of structural ledges ( b, h
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001760
EISBN: 978-1-62708-178-8
... contribute to the contrast. Only those lattice planes having reciprocal vectors lying normal to the plane containing the Burgers vector and the slip plane normal are devoid of contrast due to the dislocation. A similar kinematic origin accounts for the direct image of a defect in transmission topography...
Abstract
X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography. The article explains various topographic methods, namely, divergent beam method, polycrystal rocking curve analysis, line broadening analysis, microbeam method, and polycrystal scattering topography, as well as their instrumentation. It also describes the applications of x-ray topography.
Image
Published: 01 December 2009
Fig. 6 Heterogeneous nucleation at weak defects. Two-dimensional variational solutions to Ginzburg-Landau model for single lattice dislocation with increasing driving force (a and b), leading to transformed crystal at critical driving force for nucleation in (c). Length scale in units
More
Image
Published: 15 December 2019
Fig. 14 Back-reflection white-beam x-ray topograph recorded from a 6H-SiC single crystal with thyristors fabricated on it. The small white spots distributed over the image are 1 c and larger screw dislocations. The location of these dislocations with respect to the device topology can
More
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... be uniform or highly variable from point to point. The structures developed during plastic deformation depend on such factors as crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. In addition to line defects (dislocations), crystal lattices may...
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
... that, in turn, determines materials properties. Well-known examples of the structural defects include dislocations and homo- and heterophase interfaces, while typical examples of the chemical defects include concentration variation across heterophase interfaces (such as precipitates) and impurity segregation...
Abstract
This article discusses the fundamental aspects of phase-field microstructure modeling. It describes the evolution of microstructure modeling, including nucleation, growth, and coarsening. The article reviews two approaches used in the modeling nucleation of microstructure: the Langevin force approach and explicit nucleation algorithm. Calculation of activation energy and critical nucleus configuration is discussed. The article presents the deterministic phase-field kinetic equations for modeling growth and coarsening of microstructure. It also describes the material-specific model inputs, chemical free energy and kinetic coefficients, for phase-field microstructure modeling. The article provides four examples that illustrate some aspects of phase-field modeling.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003616
EISBN: 978-1-62708-182-5
... or introduced later by heating, plastic deformation, or bombardment with high-energy radiation. Fig. 1 Point defects. A, interstitial atom; B, vacancy; C, foreign atom in lattice site Line Defects (one-Dimensional) Line defects (one-dimensional) are of two types—edge dislocations and screw...
Abstract
The corrosion behavior of a metal or alloy is determined by its composition and structural features, the environment and stresses to which it is exposed, and the behavior of any corrosion products generated. This article provides a detailed discussion on the fundamentals of pure metals, impure metals, and alloys. It highlights the ways in which the metallurgical variables, namely, composition and structure, influence the corrosion properties of metals and alloys in aqueous environment.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003733
EISBN: 978-1-62708-177-1
... Boundaries Although APBs were previously defined as the boundary between two ordered domains where the domain atomic sequence is out of step, APBs can also be generated by dislocation motion. In an ordered structure, a defect in the atomic arrangement caused by the presence of a dislocation can cause...
Abstract
Superlattice is an ordered array of atoms that occur during their rearrangement from random site locations in the disordered solution to specific lattice sites in the ordered structure during phase transformation. This article provides a description of antiphase boundaries, their dislocations and degrees of ordering (long and short order). It focuses on the common superlattice structures and ordered phases observed in copper-gold and iron-aluminum alloy systems. These superlattice types can be referred to by Strukturbericht symbols and the prototype phase.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002459
EISBN: 978-1-62708-194-8
... of carbon, manganese, and silicon). It is now well established that the deformation of the wire during the original production of the coat hanger introduces structural defects (line defects called dislocations) into the otherwise uniform arrangement of the atoms (a body-centered cubic crystalline array...
Abstract
Materials are selected and used as a result of a match between their properties and the needs dictated by the intended application. This article provides information on how the composition and structure determine the properties of materials. It describes common structural elements that are most important in materials. The article presents a historical perspective of the use of materials and illustrates the evolution of engineering materials.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004019
EISBN: 978-1-62708-185-6
... a metal is cold worked by plastic deformation, a small portion of the mechanical energy expended in deforming the metal is stored in the specimen. This stored energy resides in the crystals as point defects (vacancies and interstitials), dislocations, and stacking faults in various forms and combinations...
Abstract
Recovery, recrystallization, and grain growth are microstructural changes that occur during annealing after cold plastic deformation and/or during hot working of metals. This article reviews the structure of the deformed state and describes the changes in the properties and microstructures of a cold-worked metal during recovery stage. It discusses the recrystallization that occurs by the nucleation and growth of grains. The article also reviews the growth behavior of the grains, explaining that the grain growth can be classified into two types: normal or continuous grain growth and abnormal or discontinuous grain growth. It also examines the key mechanisms that control microstructure evolution during hot working and subsequent heat treatment. These include dynamic recovery, dynamic recrystallization, metadynamic recrystallization, static recovery, static recrystallization, and grain growth.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... by dislocation glide, twinning, phase transformations, climb of dislocations, grain-boundary sliding, and diffusion of point defects. Which of these deformation processes is activated depends largely on intrinsic properties, for example, the Peierls stress, and extrinsic factors such as temperature and imposed...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
...., crystal lattice defects, dislocations, twins, stacking faults, second-phase particles). Selection of processing to promote the desirable microstructural features is important. Equally important is the need during processing to avoid introducing significant structural defects such as microvoids...
Abstract
This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, and stacking faults and twins and their role in this transformation. It also discusses the strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005435
EISBN: 978-1-62708-196-2
..., that is, no lattice dislocation (or topological defect) generation is allowed, then one must obey the St. Venant elastic compatibility constraints, because various strain-tensor components are derived from the displacement field and are not all independent. This can be achieved by minimizing the free energy...
Abstract
This article assesses the evolution of martensite modeling in the changing materials engineering environment. It describes the physics of displacive transformations using Ginzburg-Landau theory, microstructure representation, dynamics and simulations, density functional theory, and shuffle transitions. The article reviews the application of the Ginzburg-Landau approach to rigorous solutions for issues in the structure of a martensitic nucleus based on the martensitic nucleation theory. The three basic behavior modes of martensitic growth, such as elastic, elastic/plastic, and fully plastic are discussed. The article also reviews the overall kinetics of martensitic transformations.
Image
Published: 01 December 2009
Fig. 5 Heterogeneous nucleation at strong defects. Two-dimensional variational solutions to Ginzburg-Landau model for (a) linear elastic material and (b) nonlinear material at onset of martensite mechanical stability. Length scale in units of lattice dislocation Burgers vector, b. Source: Ref
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002460
EISBN: 978-1-62708-194-8
... comparable to an atomic diameter and one dimension that is much greater. An example of a particular line defect, an edge dislocation , is shown in Fig. 11 . The upper half of the crystal shown contains one more atom column than the lower half of it. The resultant atomic disregistry is centered about...
Abstract
This article focuses on the relationships among material properties and material structure. It summarizes the fundamental characteristics of metals, ceramics, and polymers. The article provides information on the crystal structure, the atomic coordination, and crystalline defects. It discusses the relevance of the properties to design. The article describes the common means for increasing low-temperature strength and presents an example that shows structure-property relationships in nickel-base superalloys for high-temperature applications. The relationships of microstructure with low-temperature fracture, high-temperature fracture, and fatigue failure are also discussed.
Image
in Microstructure Evolution during the Liquid/Solid Transformation in Cast Iron
> Cast Iron Science and Technology
Published: 31 August 2017
., magnesium-containing Fe-C-Si alloy). Three growth mechanisms are discussed: A, on the step of the defect boundary; B, two-dimensional nucleation; and C, screw dislocation. Source: Ref 86
More
1