Skip Nav Destination
Close Modal
Search Results for
directional solidification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 248 Search Results for
directional solidification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
..., but each grain is elongated along the solidification axis. In the case of an SCDS casting, a single grain occupies the component space. Due to the alignment of grains, a CGDS alloy tested in the longitudinal (airfoil axis) direction develops longer rupture life than its PC cast counterpart. The SCDS...
Abstract
Cast nickel-base alloys are used extensively in corrosive-media and high-temperature applications. This article briefly reviews the common types of heat treatments of nickel alloy castings: homogenization, stress relieving, in-process annealing, full annealing, solution annealing, quenching, coating diffusion, and precipitation. It describes the three general strengthening mechanisms, namely, solid-solution hardening, age hardening, and carbide precipitation. The article summarizes the typical heat treatment of the general families of nickel-base castings used in industrial applications. It focuses on the solution treatment and age hardening of cast nickel-base superalloys and the heat treatment of cast solid-solution alloys for corrosion-resisting applications. The article also discusses the typical types of atmospheres used in annealing or solution treating: exothermic, endothermic, dry hydrogen, dry argon, and vacuum.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005213
EISBN: 978-1-62708-187-0
... article also describes the growth of eutectic in cast iron in terms of isothermal solidification, directional solidification, and multidirectional solidification. cast iron directional solidification multidirectional solidification nucleation solidification liquid iron-carbon alloys austenite...
Abstract
Cast iron exhibits a considerable amount of eutectic in the solid state. This article discusses the structure of liquid iron-carbon alloys to understand the mechanism of the solidification of cast iron. It illustrates nucleation of the austenite-flake graphite eutectic, austenite-spheroidal graphite eutectic, and austenite-iron carbide eutectic. The article provides a discussion on primary austenite and primary graphite. Depending on the carbon equivalent, the primary phase in cast iron can be either austenite for hypoeutectic cast iron or graphite for hypereutectic cast iron. The article also describes the growth of eutectic in cast iron in terms of isothermal solidification, directional solidification, and multidirectional solidification.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006227
EISBN: 978-1-62708-163-4
... illustrates the monotectic solidification for low-dome alloys. The forming mechanism of the banded structure of copper-lead alloy in upward directional solidification is also described. copper-lead system forming monotectic alloys monotectic reaction monotectics solidification Another three...
Abstract
Monotectic alloys can be classified based on the difference between the critical temperature and the monotectic temperature. This article begins with a schematic illustration of monotectic reaction in copper-lead system. It discusses the solidification structures of monotectics and illustrates the monotectic solidification for low-dome alloys. The forming mechanism of the banded structure of copper-lead alloy in upward directional solidification is also described.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005214
EISBN: 978-1-62708-187-0
... Abstract This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced by the...
Abstract
This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced by the diffusion rate and the extension of the beta-phase region in the phase diagram. The article provides information on peritectic transformations in multicomponent systems.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005218
EISBN: 978-1-62708-187-0
...-ray tomography IN THE PURSUIT for improved insight into the interplay between different transport phenomena that control alloy solidification processes, the inherent difficulties with providing direct observation of the microstructure evolution have been a serious drawback. Typically, experimental...
Abstract
Metal transparency and interaction with X-rays have been recognized as obvious candidate principles from which methods for in situ monitoring of solidification processes could be developed. This article describes the use of X-ray imaging-based techniques to investigate interface morphology evolution, solute transport, and various process phenomena at spatiotemporal resolutions. It discusses the three viable imaging techniques made available by synchrotron radiation for the real-time investigation of solidification microstructures in alloys. These include two-dimensional X-ray topography, two-dimensional X-ray radiography, and ultra-fast three-dimensional X-ray tomography.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005210
EISBN: 978-1-62708-187-0
... generated at the interface is dissipated through the solid. Such a temperature field gives rise to directional solidification and results in the columnar zone in a casting. The conditions for the stability of a planar front, discussed in the previous article, “Plane Front Solidification,” by Kurz, show...
Abstract
Nonplanar microstructures form most frequently during the solidification of alloys, and they play a crucial role in governing the properties of the solidified material. This article emphasizes the basic ideas, characteristic lengths, and the processing conditions required to control the columnar and equiaxed microstructures. The formation of cellular and dendritic structures in one- and two-phase structures is presented with emphasis on the effect of processing conditions and composition on the selection of microstructure and microstructure scales.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005228
EISBN: 978-1-62708-187-0
... equals approximately 9.8 m/s 2 (32 ft/s 2 ), with its direction defining the local vertical. Modification of gravity over practical time scales for the purposes of modifying or controlling solidification was traditionally accomplished only in shot or spray towers, where molten alloys were solidified...
Abstract
Gravity has profound influences on most solidification and crystal growth processes. Modification of gravity over practical time scales for the purposes of modifying or controlling solidification proves to be a far more daunting and expensive technological challenge. This article discusses various microgravity solidification experiments that involve pure metals, alloys, and semiconductors and presents the official NASA acronyms for them. The experiments include MEPHISTO, TEMPUS, isothermal dendritic growth experiment, and advanced gradient heating facility.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005209
EISBN: 978-1-62708-187-0
...; that is, the temperature must increase from the solid into the melt. Such a situation is typical for directional solidification. Here, the heat flux is unidirectional to produce planar isotherms and interface shapes. For example, in the Bridgman process, a crucible that contains the alloy is moved...
Abstract
One impressive example of plane front solidification (PFS) is the industrial production of large silicon single crystals, used mainly as substrates for integrated circuits. This article explores the PFS of a single phase, without taking convection into account. It discusses the solute build-up at the solid-liquid interface forming transients and steady state, the morphological stability/instability and perturbation theory, and rapid solidification effects, including solute trapping and oscillatory instabilities. The article presents a microstructural selection map that gives an overview of interface stability as a function of composition for a given alloy.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005208
EISBN: 978-1-62708-187-0
... process are now considered as well as how transport phenomena are expressed in the development of microstructure. Fig. 3 Micrographs from directional solidification of a succinonitrile-acetone alloy. Left: initial planar interface with small perturbations; right: developing dendrites, with primary...
Abstract
This article begins with balance equations for mass, momentum, energy, and solute and the necessary boundary conditions for solving problems of interest in casting and solidification. The transport phenomena cover a vast range of length and time scales, from atomic dimensions up to macroscopic casting size and from nanoseconds for interface attachment kinetics to hours for casting solidification. The article describes how to determine which phenomena are most important at the particular length and time scale for the problem. It concludes with several examples of the application of transport phenomena in solidification, focusing in particular on microstructure formation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005437
EISBN: 978-1-62708-196-2
... as that shown in Fig. 3 ( Ref 4 ). Several aspects of the solidification process are now considered as well as how transport phenomena are expressed in the development of microstructure. Fig. 3 Micrographs from directional solidification of a succinonitrile-acetone alloy. Left: initial planar...
Abstract
This article presents the governing equations for moving a solidification front, based on the balance of mass, momentum, energy, and solute. It reviews how material properties and geometry can be analyzed in the context of the governing equations. The article provides several example problems that illustrate how the hierarchy of time and length scales associated with transport leads to the important features of cast microstructures. It includes equations for estimating microsegregation in cast alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005226
EISBN: 978-1-62708-187-0
... of how microscopic solidification may take place. Because of the limited size of rapidly solidified products, many samples have been prepared only for research to probe the fundamental nature of crystal growth at rapid rates and/or the amorphous state. Other direct uses for the materials are...
Abstract
Rapid solidification is a tool for modifying the microstructure of alloys that are obtained by ordinary casting. This article describes the fundamentals of the four microstructural changes, namely, microsegregation, identity of the primary phase, identity of the secondary phase, and formation of noncrystalline phases. It considers three factors: heat flow, thermodynamic constraints/conditions at the liquid-solid interfaces, and diffusional kinetics/microsegregation, to understand the fundamentals of these changes. These factors are described in detail.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003171
EISBN: 978-1-62708-199-3
... tapered wall to promote directional solidification and avoid hot spots. In steel castings, penetration may also occur as a result of formation of iron or manganese oxide on the surface of the molten metal. These oxide phases react with the silica sand to form chemical penetration, which is difficult to...
Abstract
Solidification is a comprehensive process of transformation of the melt of metals and alloys into a solid piece, involving formation of dendrites, segregation which involves change in composition, zone formation in final structure of the casting, and microporosity formation during shrinkage. This article describes the imperfections in the solidification process including porosity, inclusions, oxide films, secondary phases, hot tears, and metal penetration. It talks about the purpose of the gating system and the risering system in the casting process.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005227
EISBN: 978-1-62708-187-0
... being pushed ahead of the front. As a dendrite approaches a particle in an undercooled pure melt, it becomes more convex as k p / k l increases. In the directional solidification case of a pure material, the solidification front becomes less convex as k p / k l increases. Solidifying...
Abstract
This article discusses the solidification of matrix alloy in cast metal matrix composites (MMCs). It begins with a discussion on the mixing techniques in reinforcement incorporation and wettability of reinforcement. It describes the solidification processes, such as stir mixing and melt infiltration, used in the synthesis of MMCs. The article also discusses the fundamentals of solidification process and presents a computational modeling of particle/solidification front interactions in metal-ceramic systems. The article concludes with information on nanocomposites.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005406
EISBN: 978-1-62708-196-2
... coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions. microstructure solidification cellular automaton methods macrostructure grain structure castings heat transfers flow transfers mass transfers...
Abstract
This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure and microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005212
EISBN: 978-1-62708-187-0
... Abstract This article illustrates equilibrium phase diagram for the aluminum-silicon system showing metastable extensions of the liquidus and solidus lines. It describes the classification and microstructure of the aluminum-silicon eutectic. The article presents the theories of solidification...
Abstract
This article illustrates equilibrium phase diagram for the aluminum-silicon system showing metastable extensions of the liquidus and solidus lines. It describes the classification and microstructure of the aluminum-silicon eutectic. The article presents the theories of solidification and chemical modification of the aluminum-silicon eutectic.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005211
EISBN: 978-1-62708-187-0
... Abstract This article presents the binary eutectic phase diagram to understand the various structures that evolve in a binary eutectic system during solidification. It describes the various classifications and solidification principles of the eutectic structures. Formation of halos in eutectic...
Abstract
This article presents the binary eutectic phase diagram to understand the various structures that evolve in a binary eutectic system during solidification. It describes the various classifications and solidification principles of the eutectic structures. Formation of halos in eutectic microstructures of most alloy systems is also discussed.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005423
EISBN: 978-1-62708-196-2
... Abstract A key aspect of solidification process modeling is the treatment of the interface between the solidifying casting and the mold in which it is contained. This article begins with information on casting-mold interface heat-transfer phenomena. It describes practical considerations and...
Abstract
A key aspect of solidification process modeling is the treatment of the interface between the solidifying casting and the mold in which it is contained. This article begins with information on casting-mold interface heat-transfer phenomena. It describes practical considerations and methods for incorporating interface heat-transfer coefficient into models and for quantifying the heat transfer coefficient experimentally. The article concludes with information on the selection of the heat transfer coefficient for a given casting configuration.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004024
EISBN: 978-1-62708-185-6
... process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process. 3D Keltool process direct rapid tooling forging dies hot isostatic pressing indirect...
Abstract
This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net shape process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005215
EISBN: 978-1-62708-187-0
... the initial research on alloy solidification has been reported ( Ref 3 , 8 , 9 , 10 , 11 ). Fig. 2 Solidification curves (temperature vs. weight fraction solid) for three cases of Al-4.5%Cu alloy: equilibrium (Eq: α → ∞), Gulliver-Scheil (G-S; α → 0), and directional solidification with α...
Abstract
This article discusses the two extremes of solute redistribution that results in microsegregation. The solute redistribution includes equilibrium solidification, nonequilibrium Gulliver-Scheil solidification, and nonequilibrium solidification with back diffusion. The measurement and kinetics of microsegregation are discussed for the binary isomorphous systems: titanium-molybdenum; binary eutectic systems: aluminum-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
... avoidance. Establish thermal gradients within the cavity to promote directional solidification and to enhance riser effectiveness. Design riser size and geometry, and locate risers and riser inlets to minimize the ratio of gross weight to net weight. Minimize to the extent possible the vertical...
Abstract
This article provides a general introduction on casting processes and design. It discusses the process steps and methods of the main categories of shape casting methods, namely, expendable molds with permanent patterns, expendable molds with expendable patterns, and metal or permanent mold processes. The article lists general guidelines of geometry in casting design. It describes the factors, such as mold complexity and casting solidification, in casting design. The solidification of a casting can involve as many as three separate contractions as a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. The article discusses the factors influencing the solidification sequence of simple shapes, such as T-sections, X-sections, and L-sections. It also provides an overview of geometric factors that influence heat transfer and transport phenomena. The article concludes with a description of the structure and properties of a casting.