Skip Nav Destination
Close Modal
Search Results for
directed-energy fusion welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 502 Search Results for
directed-energy fusion welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
...; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... Abstract Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... Abstract Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
... the coordinated application of electric current and mechanical force of proper magnitude and duration. An alternating or direct current is then supplied at low voltage for the generation of resistive heat. Fig. 2 Schematic of the microresistance spot welding process for crossed-wire geometry. (a) Clamping...
Abstract
Microjoining methods are commonly used to fabricate medical components and devices. This article describes key challenges involved during microjoining of medical device components. The primary mechanisms used in microjoining for medical device applications include microresistance spot welding (MRSW) and laser welding. The article illustrates the fundamental principles involved in MRSW and laser welding. The article presents examples of various microjoining methods used in medical device applications, including pacemaker and nitinol microscopic forceps.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005609
EISBN: 978-1-62708-174-0
... ; that is, nucleation is made easier for reduced values of γ SM . Fig. 8 Comparison of free-energy changes associated with homogeneous nucleation, heterogeneous nucleation, and fusion welding Application to Fusion Welding Fusion welding represents a unique case that can be most easily understood...
Abstract
This article reviews the fundamental solidification concepts for understanding microstructural evolution in fusion welds. The common concepts, namely, nucleation, competitive grain growth, constitutional supercooling, solute redistribution, and rapid solidification, depend on the solidification parameters during welding, are discussed. The article discusses important solidification parameters, including temperature gradient, solid/liquid interface growth rate, and cooling rate.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... for AM of metals. Because physical manipulation of the arc or the substrate is necessary, arc-based methods are not suitable for the high-speed scanning employed in powder bed fusion AM processes and therefore are relegated solely to directed energy deposition AM. Operating Principles Welding arc...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... ). Transport Energetics To melt material either in a spot weld or along the path of a seam weld, a sufficient amount of energy must be deposited during the time that the beam dwells at each location. Assuming a fusion-zone volume approximated by a cube of 100 μm on a side for simplicity (1 × 10 −3 mm...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). These two types of metal AM technology are fusion-based processes with similarities to fusion welding ( Ref 9 ) or, in some cases, a cross between welding and cast product ( Ref 10 ). The metallurgical...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001381
EISBN: 978-1-62708-173-3
... increases flywheel deceleration rates, intensifies heat generation, and raises temperatures at the faying surfaces. A rapid energy input and a high rate of heat generation, typical of inertia-drive FRW, result in very short weld cycles. There is little time for heat to dissipate in the axial direction, so...
Abstract
Friction welding (FRW) can be divided into two major process variations: direct-drive or continuous-drive FRW and inertia-drive FRW. This article describes direct-drive FRW variables such as rotational speed, duration of rotation, and axial force and inertia-drive FRW variables such as flywheel mass, rotational speed, and axial force. It lists the advantages and limitations of FRW and provides a brief description on categories of applications of FRW such as batch and jobbing work and mass production. A table of process parameters of direct-drive FRW systems relative to inertia-drive FRW systems is also provided.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... conditions such as high energy density and minimum energy input, that increase the temperature gradients in both the fusion zone and the heat-affected zone (HAZ) and increase the overall weld cooling rate, will be required to minimize the widths of the partially melted region and the HAZ. Such welding...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001367
EISBN: 978-1-62708-173-3
..., and a standard resistance-welding controller. A data acquisition system usually is employed to record the force, current, voltage, and motion of the weld head during welding. Equivalent welds have been made using both alternating and direct current. Upset welds have similar characteristics to inertia...
Abstract
Upset welding (UW) is a resistance welding process utilizing both heat and deformation to form a weld. A wide variety of shapes and materials can be joined using upset welding in either a single-pulse or continuous mode. This article discusses the advantages and disadvantages of upset welding, as well as the types of welds. The advantages include speed, ease of control, fewer defects, enhanced weld properties, simplicity of equipment, less-strict composition requirements, and ability to join difficult-to-weld materials. The article reviews the role of a homopolar generator as an alternative method for supplying the electrical current for upset welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001469
EISBN: 978-1-62708-173-3
... on four factors: the chemical nature of the polymer, the surface free energy, the surface topography, and contamination of the polymer surface by dust, oil, and grease. These factors markedly affect the effectiveness of the adhesive and solvent bonding methods. Fusion welding, however, is much more...
Abstract
Polymeric materials that possess similar solubility parameters can be joined using a variety of polymer joining techniques. This article describes commonly available fusion-welding techniques such as joining methods, key joining parameters, and the application areas of each joining method. The techniques are hot-tool, hot-gas, extrusion, focused infrared, laser, friction, vibration, spin, ultrasonic, and electromagnetic welding techniques (resistance, induction, dielectric, and microwave welding). The article concludes with a discussion on welding evaluation methods.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... welding of tube and pipe. Wire Joints The joint configurations for wires shown in Fig. 2 were developed by the electronics industry. For wire-to-wire joints, the two wires must share the incident laser energy. In a cross joint, for example, the laser beam should be directed at the intersection...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... in, numerical models. dissimilar-metal welding electron beam welding energy equation fluid flow models fusion welding gas metal arc welding gas tungsten arc welding heat transfer heat transfer models laser welding laser-arc hybrid welding mass equation mass transfer momentum equation...
Abstract
This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty in, numerical models.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005589
EISBN: 978-1-62708-174-0
... Comparison of weld-metal dilution determined from geometric measurements and direct chemical composition measurements made by electron probe microanalysis (EPMA). Source: Ref 1 It should be noted that other factors can change the final fusion-zone composition in ways that are not accounted...
Abstract
Dissimilar metal welding applications require careful control over the welding parameters and corresponding dilution level in order to produce welds with proper microstructure and properties for the intended service. This article reviews the relation between the dilution and bulk fusion-zone compositions and describes the effect of fusion welding parameters on dilution. It also provides typical examples of the microstructure and property control in dissimilar weld applications.
Image
Published: 30 June 2023
jetting. (f) Directed-energy deposition (DED). TIG, tungsten inert gas; GMAW, gas metal arc welding. (g) Sheet lamination. LOM, laminated object manufacturing
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... of fusion The distance that fusion term for direct current electrode negative. electrogas welding (EGW) An arc welding extends into the base metal or previous pass discontinuity An interruption of the typical process that produces coalescence of metals from the surface melted during welding. structure...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001421
EISBN: 978-1-62708-173-3
... with pulse energies that varied from 5 to 20 J. All welds were autogenous bead-on-plate welds. The fusion zone of the CO 2 laser-beam welds made in this study exhibited three distinct regions ( Fig. 3 ). The upper central region (region 1) contained large amounts of Al 4 C 3 and silicon in the aluminum...
Abstract
The effective integration of aluminum metal-matrix composites (Al-MMCs) into useful structures and devices often requires an understanding of the weldability of Al-MMCs that includes a thorough knowledge on the effects of various interactions between matrix and reinforcement. This article provides a detailed discussion on weldability and the effect of viscosity, chemical reactions, and solidification on weldability. It discusses different welding processes, namely, gas-tungsten arc welding, gas-metal arc welding, laser-beam welding, electron-beam welding, resistance welding, friction welding, transient liquid phase bonding, and capacitor discharge welding.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003785
EISBN: 978-1-62708-177-1
... area as a function of θ and φ as shown in (a). (b) Joint penetration error. (c) Weld bead area error Fig. 7 2.25Cr-1Mo steel plate, single-pass electron beam weld. Heat input: 0.5 MJ/m. Macrostructure shows high depth-to-width ratio of the fusion zone, which is typical of high-energy density...
Abstract
This article provides a review of metallographic procedures and techniques for analyzing the microstructure of fusion welded joints. It discusses sample preparation, the use of backing plates, and common sectioning methods. It identifies the various types of defects that can occur in arc welded metals, organizing them according to the sectioning method by which they are observed. It describes the relationship between weld bead morphology and sectioning direction and its effect on measurement error. The article examines micrographs from stainless steel, aluminum, and titanium alloy joints, highlighting important details such as solidification and solid-state transformation structures and what they reveal about the welding process. Besides arc welding, it also discusses laser and electron beam welding methods, resistance and spot welding, and the welding of dissimilar metals.
1