Skip Nav Destination
Close Modal
Search Results for
direct-quenched carburized steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 405
Search Results for direct-quenched carburized steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
... bending fatigue crack initiation and unstable crack propagation of direct-quenched carburized steels. alloying austenitic grain size bending fatigue carburized steel crack initiation cyclic mechanical loading direct-quenched carburized steel intergranular fracture microstructure residual...
Abstract
Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface oxidation, retained austenite, subzero cooling, residual stresses, and shot peening. The article describes the analysis of bending fatigue behavior of the steels based on S-N curves that represents a stress-based approach to fatigue. It discusses the types of specimen used to evaluate bending fatigue in carburized steels. The stages of fatigue and fracture of the steels, namely crack initiation, stable crack propagation, and unstable crack propagation, are reviewed. The article analyzes the intergranular fracture at the prior-austenite grain boundaries of high-carbon case microstructures that dominates bending fatigue crack initiation and unstable crack propagation of direct-quenched carburized steels.
Image
Published: 01 January 1996
Fig. 1 Typical near-surface case microstructure of direct-quenched carburized steel. Martensite plates etch dark and retained austenite appears white. Gas-carburized AISI 8719 steel (1.06% Mn, 0.52% Cr, 0.5% Ni, 0.17% Mo). Light micrograph, nital etch
More
Image
in Calculation of Hardenability in High-Carbon Steels[1]
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 6 Jominy hardenability of carburized 16MnCr5 German steel. (a) Direct quench. All bars normalized at 925 °C (1700 °F). Core: austenitized 20 min at 920 °C (1690 °F). Case: pack carburized 9 h at 920 °C (1690 °F), direct quench. (b) All bars normalized at 925 °C (1700 °F). Core
More
Image
Published: 01 January 1996
Fig. 17 S-N curves for direct-quenched gas-carburized 4615 and 8620 steels, notched 4-point bend specimens. Non-martensitic transformation products were present on the surfaces of the 8620 steel specimens and absent on the 4615 steel specimens. Source: Ref 57
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001024
EISBN: 978-1-62708-161-0
... steels. The selection of a carburizing steel for a specific bearing section is based on the heat-treating practice of the producer, either direct quenching from carburizing or reheating for quenching, and on the characteristics of the quenching equipment. carburizing bearing steels heat treatment...
Abstract
Bearing steels, which include high-carbon and low-carbon types, can be divided into service-based classes, such as normal service, high-temperature service, and service under corrosive conditions. This article discusses the importance of matching the hardenability and quenching of a bearing steel. It also discusses the typical microstructure of a high-carbon through-hardened bearing, and shows typical case and core microstructures in carburized bearing materials. Apart from a satisfactory microstructure, which is obtained through the proper combination of steel grade and heat treatment, the single most important factor in achieving high levels of rolling-contact fatigue life in bearings is the cleanliness, or freedom from harmful nonmetallic inclusions, of the steel. Alloy conservation and a more consistent heat-treating response are benefits of using specially designed bearing steels. The selection of a carburizing steel for a specific bearing section is based on the heat-treating practice of the producer, either direct quenching from carburizing or reheating for quenching, and on the characteristics of the quenching equipment.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... hardenability. This is still generally true when the steels are direct quenched from carburizing, so that the carbon and alloying elements are in solution in the case austenite. In parts that are reheated for hardening and in heavy-sectioned parts, however, both case and core hardenability requirements should...
Abstract
This article commences with a brief introduction on the hardenability of carburized steels, and then reviews the factors used in the selection of carburizing steels and heat treatment methods. The factors include quench medium, stress considerations, case depth, and type of case. The article provides information on steels for carburized gears with emphasis on gear design requirements, selection process, selection of carbon content, case and core hardness, microstructure, and toughness and short-cycle fatigue.
Image
Published: 01 December 2004
Fig. 17 Effect of subzero-temperature treatment on retained austenite in carburized 0.15% C steel (0.17C-0.05Si-0.64Mn, wt%). (a) Carburized at 940 °C (1725 °F) for 2 h, cooled slowly to room temperature, and single quenched from 940 °C (1725 °F). 1% nital etch. (b) Carburized at 940 °C (1725
More
Image
in Calculation of Hardenability in High-Carbon Steels[1]
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 4 Jominy hardenability of carburized 8620 steel. (a) Reheat quench. All bars normalized at 925 °C (1700 °F). Core: austenitized 20 min at 845 °C (1550 °F). Case: pack carburized 9 h at 925 °C (1700 °F), box cool; reheated 20 min at 845 °C (1550 °F), quenched. (b) Direct quench. All bars
More
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005801
EISBN: 978-1-62708-165-8
... to predict hardenability from composition for homogeneous high-carbon steels as well as the case hardenability of high-carbon regions in carburizing grades. Case hardenability can be calculated for both the single-quench practice, wherein the steel is hardened by direct or delay quenching from carburizing...
Abstract
Hardenability of steel depends on carbon content and other alloying elements as well as on the grain size of the austenite phase. This article provides information on the calculation of high-carbon (carburized) steel hardenability. It contains tables that list multiplying factors that are used for the calculation of case hardenability of carburizing steels and the hardenability of high-carbon steels hardened after a prior normalize or quench treatment. The article reviews the derivation and limitations of multiplying factors.
Image
Published: 01 January 2002
Fig. 77 Direct quenching from carburizing temperature. (a) Phase diagram schematic. (b) Continuous cooling transformation curve for a high-carbon surface. (c) Micrograph of direct quenched 3% Ni-Cr carburized steel. 280×. Source: Ref 30
More
Image
Published: 30 September 2014
Fig. 114 Direct quenching from carburizing temperature. (a) Phase diagram schematic. (b) Continuous cooling transformation curve for a high-carbon surface. (c) Micrograph of direct quenched 3% Ni-Cr carburized steel. 280×. Source: Ref 43
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005799
EISBN: 978-1-62708-165-8
...-rich surface and a decreasing carbon concentration profile with a low-carbon steel core. Subsequent hardening of the carburized parts produces a hardness profile that is dependent on the carbon gradient, steel hardenability, and quench severity of the hardening operation. The carburized and hardened...
Abstract
This article describes the thermodynamics and kinetics of gas carburizing reactions, and details the mass transfer mechanism during gas carburizing. It discusses the various considerations involved in carburizing process planning, and reviews successful operation of the gas carburizing process based on the control of three principal variables: temperature, atmosphere composition or carbon potential, and time. The article also describes the selection criteria for alloy, carbon sources, atmosphere types, and carbon monoxide level for endothermic carburizing atmospheres. It provides information on carburizing modeling, case depth prediction, case depth measurement, and case depth evaluation as well as on carburizing equipment, and also covers the factors affecting distortion after carburizing.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005956
EISBN: 978-1-62708-166-5
... Abstract The process of case hardening of steel includes three consecutive steps of heat treatment: heating; the thermochemical process with the enrichment of the surface area during the carburizing or carbonitriding stage with carbon and nitrogen; and the subsequent quenching process...
Abstract
The process of case hardening of steel includes three consecutive steps of heat treatment: heating; the thermochemical process with the enrichment of the surface area during the carburizing or carbonitriding stage with carbon and nitrogen; and the subsequent quenching process for hardening. This article provides a model-based description of the development of residual stresses during case hardening. It also describes the influence and effects of residual stresses and distortion in hardening, carburizing, and nitriding processes of the steel.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005996
EISBN: 978-1-62708-168-9
... or when facilities for quenching form the carburizing cycle are not available. Distortion is at least equal to that obtained by a single quench from the carburizing cycle, as described in note (e). Direct hardening of carbon steels. Temper to desired hardness Table 6 Direct hardening of carbon...
Abstract
This article is a compilation of tables that present information on austenitizing temperatures for direct-hardening carbon and alloy steels, case depth of steels for different carburizing times and temperatures, typical heat treatments for case hardening of carbon and carburizing of alloy steels, as well as direct hardening of carbon steels and alloy steels.
Image
Published: 01 October 2014
Fig. 21 End-quench hardenability of carburized 4118 steel. Bars normalized at 925 °C (1700 °F). Core was austenitized for 20 min at 925 °C (1700 °F). Case was pack carburized for 9 h at 925 °C (1700 °F) and direct quenched. Source: Ref 8
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003762
EISBN: 978-1-62708-177-1
... is then hardened, either by direct quenching (from the austenitizing temperature during carburization) or by reheating and quenching. Generally, lean grades of steel are direct quenched, while more-alloy grades are reheat quenched. The amount and morphology of martensite in the case depends on the carbon content...
Abstract
This article discusses the metallography and microstructures of carburized, carbonitrided, and nitrided steels, with illustrations. It provides information on the widely used metallographic techniques including sectioning, mounting, grinding and polishing, and etching.
Image
Published: 01 October 2014
Fig. 15 End-quench hardenability of carburized (a) 4028 and (b) 4427 steels. Bars normalized at 925 °C (1700 °F). Core was austenitized for 20 min at 925 °C (1700 °F). Case was pack carburized for 9 h at 925 °C (1700 °F) and direct quenched. Source: Ref 8
More
Image
Published: 01 October 2014
Fig. 27 End-quench hardenability of carburized (a) 8617 and (b) 8822 steels. Bars normalized at 925 °C (1700 °F). Core was austenitized for 20 min at 925 °C (1700 °F). Case was pack carburized for 9 h at 925 °C (1700 °F) and direct quenched. Source: Ref 8
More
Image
Published: 01 October 2014
Fig. 32 End-quench hardenability of carburized 8620 steels with variation in chromium content. (a) 8620 with 0.21 wt% Cr. (b) 8620 with 0.031 wt% Cr. Bars normalized at 925 °C (1700 °F). Core was austenitized for 20 min at 925 °C (1700 °F). Case was pack carburized for 9 h at 925 °C (1700 °F
More
Image
Published: 01 August 2013
Fig. 32 Effect of tempering on residual stress in carburized steel. Bars of 8617 steel, 19 mm (0.75 in.) in diameter, were carburized, direct oil quenched, and tempered for 1 h at the indicated temperature.
More
1