Skip Nav Destination
Close Modal
Search Results for
direct powder rolling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 758 Search Results for
direct powder rolling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006136
EISBN: 978-1-62708-175-7
... Abstract Direct powder rolling (DPR) is a process by which a suitable powder or mixture of powders is compacted under the opposing forces of a pair of rolling mill rolls to form a continuous green strip that is further densified and strengthened by sintering and rerolling. This article...
Abstract
Direct powder rolling (DPR) is a process by which a suitable powder or mixture of powders is compacted under the opposing forces of a pair of rolling mill rolls to form a continuous green strip that is further densified and strengthened by sintering and rerolling. This article discusses the basic principle, process considerations, and advantages of DRP, and describes the application of this process in the manufacture of powder titanium and titanium alloy components. It further illustrates the complexity of the process and describes the benefits of using DRP in terms of economics and product quality.
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Fig. 6 (a) Direct powder rolling mill, (b) 0.25 mm (0.010 in.) thick porous Ti strip, (c) and (d) 6.35 mm (0.25 in.) thick Ti-6Al-4V direct powder rolled plate. Courtesy ADMA Products, Inc.
More
Image
Published: 30 September 2015
Fig. 8 Microstructure of titanium MMC strip produced by direct powder rolling plus sintering. Density is 4.25 g/cm 3 .
More
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Fig. 7 Microstructures of PM direct powder rolled Ti-6Al-4V strips produced from ADMA titanium powder. UTS = 965 MPa (140 ksi), YS = 848 MPa (123 ksi), El = 12.5%
More
Image
Published: 30 September 2015
Fig. 7 (a) Combination of direct powder process with hot rolling densification. (b) Microstructure of green titanium strip. (c) Microstructure of consolidated strip. Source: Ref 21
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006045
EISBN: 978-1-62708-175-7
... Abstract Consolidation of titanium powders at room temperature may be performed by low-cost conventional powder metallurgy processes. This article provides information on various consolidation methods, namely, die pressing, direct powder rolling, and cold isostatic pressing. It also describes...
Abstract
Consolidation of titanium powders at room temperature may be performed by low-cost conventional powder metallurgy processes. This article provides information on various consolidation methods, namely, die pressing, direct powder rolling, and cold isostatic pressing. It also describes the sintering of blended elemental powders, high-strength titanium alloys, and porous material as well as the sintering of titanium powders by microwave heating.
Image
Published: 30 September 2015
Fig. 12 Porous parts produced by various powder metallurgy processes for applications in corrosion environments. (a) Cold isostatic pressed and sintered porous filters. (b) Direct powder rolling porous plates. Courtesy of ADMA Products, Inc.
More
Image
Published: 30 September 2015
Fig. 4 Comparison of the conventional ingot-based process with the direct powder rolling process for titanium alloy sheet
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006485
EISBN: 978-1-62708-207-5
..., and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot, and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes in terms of stress relief, homogenization, and scalping. The article concludes with a discussion on safety limited to ingot casting.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001759
EISBN: 978-1-62708-178-8
... align themselves with the thermal gradient direction at the solid/liquid interface. Because crystalline powders are often nonspherical, powder compacts typically exhibit a preferred orientation reflecting the shape interaction of powders during compaction. Recrystallization textures are observed after...
Abstract
Crystallographic texture measurement and analysis is an important tool for correlating material properties with microstructural features. This article describes the general approach to quantifying crystallographic texture, namely, the collection of statistical data from grain measurements and subsequent analysis based on Euler plots (i.e., pole figures), orientation distribution functions, and stereographic projections. Using detailed illustrations and examples, it explains the significance of preferred crystallographic orientations and their influence on properties and material behavior. The article also discusses sample selection and preparation as well as the challenges and limitations of various methods.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005286
EISBN: 978-1-62708-187-0
.... direct chill process solidification twin-roll strip casting wheel-belt process ingot molten-metal processing open-mold casting slab casting stress relief scalping aluminum alloy ingot casting continous process postsolidification process INGOT CASTING is the vital conduit between molten...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required by downstream manufacturing processes. This article starts with a review of the different forms of ingot and the molten-metal processing techniques involved in ingot casting. It then describes the open-mold casting and direct chill (DC) ingot casting processes. The process variations and solidification in the DC process are summarized. The article explains continuous processes, namely, twin-roll strip casting, slab casting, and wheel-belt processes. It concludes with information on postsolidification processes, including stress relief and scalping, and a discussion of safety practices for ingot casting.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005454
EISBN: 978-1-62708-196-2
.... A reduction in yield in tension in two directions in the plane of the Bravais lattices. The 14 possible three-dimen- strength on straining a material in the sheet. sional arrays of atoms in crystals (see space opposite direction to the initial testing. billet. A semifinished section that is hot rolled lattice...
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004031
EISBN: 978-1-62708-185-6
... the bend axis is parallel to the rolling forgings are desired and the cost of machining per square inch of minimum cross section, or direction of the sheet. each part to its nal shape is not excessive. other equivalent. See also fracture stress. Bridgman correction. Factor used to obtain the biaxial...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003091
EISBN: 978-1-62708-199-3
... of various steel manufacturing processes, such as ingot casting, continuous casting, and hot rolling. It provides an outline of specialized processing routes of producing ultralow plain carbon steels, interstitial-free steels, high strength low-alloy steels, ultrahigh strength steels, stainless steels...
Abstract
This article presents a detailed account on the process flow, composition, alternative sources, and the advancement of ironmaking, steelmaking and secondary steelmaking practices. Some steels, such as bearing steels, heat-resistant steels, ultrahigh strength missile and aircraft steels, and rotor steels have higher quality requirements and tighter composition control than plain carbon or ordinary low-alloy steels. The production of special-quality steels requires vacuum-based induction or electric remelting and refining capabilities. The article explores the types and characteristics of various steel manufacturing processes, such as ingot casting, continuous casting, and hot rolling. It provides an outline of specialized processing routes of producing ultralow plain carbon steels, interstitial-free steels, high strength low-alloy steels, ultrahigh strength steels, stainless steels, and cold-rolled products, and briefly explains the analytical techniques for liquid steels.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
... orientation leads to improved overall ductility, a property particularly sensitive to orientation, in all directions in the consolidated component. For this reason, impact grinding has largely replaced attritioning and ball milling as the major powder production technique. Atomization Atomization has...
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001105
EISBN: 978-1-62708-162-7
... oxide cermets, carbide and carbonitride cermets, boride cermets, and other refractory types. It describes the powder metallurgy process by which cermets are produced, examining each step from powder preparation to post treatment. It discusses forming and compacting, injection molding, extrusion, rolling...
Abstract
Ceramic-metal composites, or cermets, combine the heat and wear resistance of ceramics with the formability of metals, filling an application niche that includes cutting tools, brake pads, heat shields, and turbine components. This article examines a wide range of cermets, including oxide cermets, carbide and carbonitride cermets, boride cermets, and other refractory types. It describes the powder metallurgy process by which cermets are produced, examining each step from powder preparation to post treatment. It discusses forming and compacting, injection molding, extrusion, rolling, pressing, slip casting, and sintering. It also discusses fundamental concepts such as chemical bonding, chemical composition, microstructure, and the development of physical and mechanical properties.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.9781627081979
EISBN: 978-1-62708-197-9
1