1-20 of 702

Search Results for direct arc melting

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005299
EISBN: 978-1-62708-187-0
... characteristics, melting practices, melt treatment, and feeding of the molten steel into the mold used in steel foundries. It discusses the features of melting furnaces used in direct arc melting and induction melting. It reviews factors such as wall thickness and designing for avoidance of hot spots. The article...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
... for harnessing and directing the energy of the arcs are required in order to produce molten iron and steel in the electric furnace without destroying the furnace refractories. The energy requirements for melting various carbon levels in iron or steel are shown in Fig. 2 . Fig. 2 Power consumed in melting...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005202
EISBN: 978-1-62708-187-0
... of a consumable electrode by means of a direct current arc (electrode negative, melt pool positive) in a vacuum on the order of 0.1 to 1 Pa (7.5 × 10 −4 to 0.0075 torr). In some cases, the melting is carried out under inert gas with a pressure up to 1000 Pa (7.5 torr). Evaporation losses of volatile alloying...
Book Chapter

By G. Keough
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005203
EISBN: 978-1-62708-187-0
... Abstract Skull melting refers to the use of furnaces with water-cooled crucibles that freeze a solid “skull” of material on the crucible wall. This article describes the basic components, operating pressure, advantages, and applications of vacuum arc and induction skull melting furnaces...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... wire feed short-circuit GMAW involves varying the electrode feed speed and direction in coordination with control of welding current and voltage levels. Similar to conventional short-circuiting transfer, this process variation has an arcing phase where the end of the electrode melts and a shorting...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... such as electric arc or induction melting can be plasma arc remelted into a water-cooled withdrawal crucible. The major objectives for plasma arc remelting are: To obtain directional solidification without changing the chemical composition of the feed material To improve cleanliness by removal, size...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... surface heat flux to represent that direct impingement of the arc, combined with a ellipsoidal Gaussian volumetric heat source to represent the energy distributed by stirring within the melt pool. Innumerable alternate model formulations, of ever-increasing sophistication, have been developed that address...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
... into the workpiece, and the effective heat, H e , is the heat that melts the wire. This can be simplified by omitting the arc column heat and resistive heat. In conventional direct current electrode positive GMAW: (Eq 13) H e = V a I / v (Eq 14) H = ( V a + V c ) I...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... of fusion The distance that fusion term for direct current electrode negative. electrogas welding (EGW) An arc welding extends into the base metal or previous pass discontinuity An interruption of the typical process that produces coalescence of metals from the surface melted during welding. structure...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... the arc gap. The transition current is proportional to the electrode diameter, and, to a lesser extent, to the electrode extension. It also has a direct relationship to the filler metal melting temperature. Transition currents for various materials and electrode diameters are shown in Table 1...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... Abstract Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... operation Slag and self-generated gas All engineering metals and alloys except pure Cu, precious metals, low-melting and reactive metals 1 mm (0.04 in.) and upward All fields of engineering Gas metal arc welding (flux cored wire) Arc Direct current; electrode positive Flux is enclosed in tubular...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
... operation. Arc Furnaces Electric arc furnaces are used almost exclusively for melting steel, although some iron is melted in them, and they may be used as holding or refining furnaces. Arc furnaces may be direct current or alternating current. In either case, power to the furnace is provided...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
...-centered cubic KIc plane-strain fracture toughness CLAS counter-gravity low-pressure air-melted FCAW ux cored arc welding Kt theoretical stress concentration factor FDM nite difference method k distribution coef cient sand casting FEM nite element method kg kilogram CLV counter-gravity low-pressure...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
.... arc welding brazing chemically driven fusion welding directed-energy fusion welding electron beam welding fusion welding joining laser welding nonfusion welding resistance welding soldering welding BECAUSE METALS AND ENGINEERING ALLOYS are used in more diverse applications than any...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005199
EISBN: 978-1-62708-187-0
... degassing refractories vacuum ladle degassing vacuum oxygen decarburization melting steels steel surface metallurgy ladle metallurgy argon oxygen decarburization vessel converter vessel direct arc melting MELT PROCESSING of steels can be broadly classified as either primary steelmaking...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001481
EISBN: 978-1-62708-173-3
... (GTAW) is the most frequently modeled arc-welding process in which the heat source is a nonconsumable electrode. In the direct current electrode negative GTAW process, the pieces of material are joined together by energy that is transferred to the workpiece by four primary mechanisms ( Ref 8...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005580
EISBN: 978-1-62708-174-0
..., such as soldering, brazing, or adhesive bonding, in which the mechanical and physical properties of the base materials cannot be duplicated at the joint. In arc welding, the intense heat needed to melt metal is produced by an electric arc. The arc is formed between the work to be welded and an electrode...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... produces an arc between a tungsten (nonconsumable) electrode and the weld pool by either alternating current (ac) or direct current (dc) electrode negative. The electrode negative mode generates the greatest amount of heat at the work, but it does not provide cleaning action on the work surface. The ac...