1-20 of 572

Search Results for diffusion creep

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2009
Fig. 4 Comparison of the activation energy for self-diffusion versus the creep activation energy for a variety of metals. Source: Ref 8 More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... Abstract Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005512
EISBN: 978-1-62708-197-9
... on the properties (yield stress, creep behavior, diffusion constants) of the materials being joined and on the condition of the two faying surfaces. Typically, the two surfaces to be bonded are far from smooth on the atomic scale, and the initial contact area between the two surfaces constitutes a very small...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003287
EISBN: 978-1-62708-176-4
..., by characterizing the stress and temperature dependence of the creep rate, it is often possible to identify the rate-controlling mechanism for a particular material. Commonly, it is observed that the activation energy for creep is the same as that for diffusion; hence, the term exp − Q c / kT is replaced...
Book Chapter

By Sammy Tin
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... to be controlled by lattice diffusion. The problem of diffusional creep was first addressed by Nabarro and Herring ( Ref 16 ). Creep deformation occurs as a result of coordinated atom movement between different interfaces that results in a macroscopic shape change. Intrinsically, this is an extremely slow...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... coalesce to advance the crack. Such crack growth is dominantly intergranular. The kinetics of cavity growth have been modeled as either diffusive growth or as growth constrained by the deformation of the surrounding grains. These have led to models for rationalizing the correlation between creep crack...
Image
Published: 31 October 2011
Fig. 1 Mechanism of diffusion welding. (a) Initial “point” contact and oxide contaminant layer. (b) After some “point” yielding and creep, a thinner oxide layer with large voids results. (c) After final yielding and creep, some voids remain with very thin oxide layer. (d) Continued vacancy More
Image
Published: 01 January 1993
Fig. 1 Mechanism of diffusion welding. (a) Initial “point” contact and oxide contaminant layer. (b) After some “point” yielding and creep, a thinner oxide layer with large voids results. (c) After final yielding and creep, some voids remain with very thin oxide layer. (d) Continued vacancy More
Image
Published: 01 January 2000
Fig. 4 Creep data for several fcc metals plotted as a function of normalized shear stress (σ s / G ) compared with a power-law stress exponent of n = 4. Because the activation for creep ( Q in Eq 2 ) is the same as that for diffusion, the term exp (− Q / RT ) in Eq 2 is replaced here More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004020
EISBN: 978-1-62708-185-6
... behavior, concurrent grain growth, and high stress behavior. ambient temperature creep mechanisms diffusion creep diffusional flow dislocation creep Nabarro-Herring creep strain hardening CONSTITUTIVE RELATIONS for metalworking include elements of behavior at ambient temperature as well...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005433
EISBN: 978-1-62708-196-2
... 22. Coble R.L. , A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , J. Appl. Phys. , Vol 34 , 1963 , p 1679 – 1682 23. Raj R. and Ashby M.F. , On Grain Boundary Sliding and Diffusional Creep , Metall. Trans. , Vol 2 , 1971 , p 1113...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
... ). Fortunately, all these mechanisms can be fitted into two basic categories: diffusional creep and dislocation creep. In diffusional creep, diffusion of single atoms or ions either by bulk transport (Nabarro-Herring creep) or by grain-boundary transport (Coble creep) leads to a Newtonian viscous type...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005606
EISBN: 978-1-62708-174-0
... contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion of atoms to the voids and grain-boundary migration. (d) Third stage: volume diffusion of atoms to the voids During...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001350
EISBN: 978-1-62708-173-3
... bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain boundary diffusion of atoms to the voids and grain boundary migration. (d) Third stage: volume diffusion of atoms...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005556
EISBN: 978-1-62708-174-0
... because these types of welds are, mechanically, quite anisotropic. This includes the case where interlayers may be subjected to residual stresses from fabrication. The loading may be continually increasing, as with a conventional tensile test, or static, as with creep tests. Again, these behaviors...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001352
EISBN: 978-1-62708-173-3
.... The loading may be continually increasing, as with a conventional tensile test, or static, as with creep tests. Again, these behaviors are quite different. Additionally, some interlayer/base-metal interfaces have been shown to be susceptible to stress-corrosion cracking when exposed to critical...
Image
Published: 31 October 2011
Fig. 2 Sequence of metallurgical stages in diffusion bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion of atoms to the voids and grain More
Image
Published: 01 January 1993
Fig. 2 Sequence of metallurgical stages in diffusion bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain boundary diffusion of atoms to the voids and grain More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005183
EISBN: 978-1-62708-186-3
... creep mechanisms that are useful for illustrating the strong stress dependence of dislocation and diffusional flow. ambient temperature Isothermal constitutive modeling physical models strain hardening strain-rate-sensitive flow superplastic flow CONSTITUTIVE RELATIONS for metalworking...
Image
Published: 01 December 1998
Fig. 1 Sequence of metallurgical stages in the DB process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion of atoms to the voids and grain-boundary More