Skip Nav Destination
Close Modal
By
Murray W. Mahoney, Cliff C. Bampton
Search Results for
diffusion bonding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 953
Search Results for diffusion bonding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Diffusion Bonding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005612
EISBN: 978-1-62708-174-0
... Abstract This article describes the solid-phase and liquid-phase processes involved in diffusion bonding of metals. It provides a detailed discussion on the diffusion bonding of steels and their alloys, nonferrous alloys, and dissimilar metals. Ceramic-ceramic diffusion welding and a variation...
Abstract
This article describes the solid-phase and liquid-phase processes involved in diffusion bonding of metals. It provides a detailed discussion on the diffusion bonding of steels and their alloys, nonferrous alloys, and dissimilar metals. Ceramic-ceramic diffusion welding and a variation on this process in which ceramic powder compacts are simultaneously sintered and bonded are also discussed.
Book Chapter
Fundamentals of Diffusion Bonding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005606
EISBN: 978-1-62708-174-0
... of bonding, the voids are very small and very likely have no impact on interface strength. Again, diffusional processes cause the shrinkage and elimination of voids, but the only possible diffusion path is now through the volume of the grains themselves. Stage I—Microasperity Deformation The nature...
Abstract
This article provides a qualitative summary of the theory of diffusion bonding, as distinguished from the mechanisms of other solid-state welding processes. Diffusion bonding can be achieved for materials with adherent surface oxides, but the resultant interface strengths of these materials are considerably less than that measured for the parent material. The article describes three stages of diffusion bonding: microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with information on diffusion bonding with interface aids.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005512
EISBN: 978-1-62708-197-9
... Abstract The goals of modeling diffusion bonding can be regarded as twofold: to optimize the selection of the process variables for a given material and to provide an understanding of the mechanisms by which bonding is achieved. This article describes the existing models of diffusion bonding...
Abstract
The goals of modeling diffusion bonding can be regarded as twofold: to optimize the selection of the process variables for a given material and to provide an understanding of the mechanisms by which bonding is achieved. This article describes the existing models of diffusion bonding with an assumption that the surfaces to be joined are free of contaminants and oxide, that bonding occurs between similar materials, and that the materials are single-phase metals. It discusses the mechanisms considered for diffusion bonding and limitations of existing models.
Book Chapter
Fundamentals of Diffusion Bonding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001350
EISBN: 978-1-62708-173-3
... this third stage of bonding, the voids are very small and very likely have no impact on interface strength. Again, diffusional processes cause the shrinkage and elimination of voids, but the only possible diffusion path is now through the volume of the grains themselves. Stage I: Microasperity Deformation...
Abstract
Diffusion bonding is only one of many solid-state joining processes wherein joining is accomplished without the need for a liquid interface (brazing) or the creation of a cast product via melting and resolidification. This article offers a qualitative summary of the theory of diffusion bonding. It discusses factors that affect the relative difficulty of diffusion bonding oxide-bearing surfaces. These include surface roughness prior to welding, mechanical properties of the oxide, relative hardness of the metal and its oxide film, and prestraining or work hardening of the material. The article describes the mechanism of diffusion bonding in terms of microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with a discussion on diffusion bonding with interface aids.
Image
Typical lightweight panels produced with diffusion bonding and superplastic...
Available to PurchasePublished: 01 January 2006
Image
Example of a four-sheet superplastic forming/diffusion bonding process in w...
Available to PurchasePublished: 01 January 2006
Fig. 18 Example of a four-sheet superplastic forming/diffusion bonding process in which the outer sheets are formed first and the center sheets are then formed and bonded to the outer two sheets
More
Image
Superplastic forming/diffusion bonding (SPF/DB) of titanium sheet. (a) Sequ...
Available to PurchasePublished: 31 October 2011
Fig. 1 Superplastic forming/diffusion bonding (SPF/DB) of titanium sheet. (a) Sequence of operations required to join three sheets of superplastic titanium alloy using the SPF/DB process. (b) Typical three-sheet titanium alloy component superplastically formed following diffusion bonding
More
Image
Sequence of metallurgical stages in diffusion bonding process. (a) Initial ...
Available to PurchasePublished: 31 October 2011
Fig. 2 Sequence of metallurgical stages in diffusion bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion of atoms to the voids and grain
More
Image
Cross section of the SPF process combined with diffusion bonding (SPF/DB). ...
Available to PurchasePublished: 01 December 1998
Fig. 53 Cross section of the SPF process combined with diffusion bonding (SPF/DB). The process shown utilizes pre-placed details to which the superplastic sheet is bonded.
More
Image
Sequence of diffusion bonding in Ti-6Al-4V under a pressure gradient. Sourc...
Available to PurchasePublished: 01 November 2010
Image
in Modeling Diffusion in Binary and Multicomponent Alloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 18 Diffusion-bonding concentration profiles predicted by the error function Eq 115 . For n = 1, the thin-film solution and the error function solution are nearly the same. For n = 0.25, the profiles appear to overlap.
More
Image
Superplastic forming/diffusion bonding (SPF/DB) of titanium sheet. (a) Sequ...
Available to PurchasePublished: 01 January 1993
Fig. 1 Superplastic forming/diffusion bonding (SPF/DB) of titanium sheet. (a) Sequence of operations required to join three sheets of superplastic titanium alloy using SPF/DB process. (b) Typical three-sheet titanium alloy component superplastically formed following diffusion bonding.
More
Image
Sequence of metallurgical stages in diffusion bonding process. (a) Initial ...
Available to PurchasePublished: 01 January 1993
Fig. 2 Sequence of metallurgical stages in diffusion bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain boundary diffusion of atoms to the voids and grain
More
Image
Processing sequence during diffusion bonding of a titanium part using stain...
Available to PurchasePublished: 01 January 1997
Fig. 9 Processing sequence during diffusion bonding of a titanium part using stainless steel tooling. Source: Ref 13
More
Image
Ti-6Al-4V plate diffusion-bonded joint (bonded at 925 °C, or 1700 °F) illus...
Available to PurchasePublished: 01 December 2004
Fig. 45 Ti-6Al-4V plate diffusion-bonded joint (bonded at 925 °C, or 1700 °F) illustrating bond-line contamination. The white horizontal band is an area of O 2 and/or N 2 enrichment. An alpha case is also observable on the exterior surface. Etchant: 50 mL H 2 O, 50 mL 10% oxalic acid, 1 mL
More
Image
Scanning electron micrograph of diffusion-bonded elements on steel powder. ...
Available to PurchasePublished: 30 September 2015
Fig. 17 Scanning electron micrograph of diffusion-bonded elements on steel powder. Source: Ref 16 ; used with permission
More
Image
Polished section of a diffusion-bonded joint between a coarse-grained and a...
Available to PurchasePublished: 01 December 2004
Fig. 28 Polished section of a diffusion-bonded joint between a coarse-grained and a fine-grained alumina ceramic (99.7% Al 2 O 3 ) thermally etched in air at 1400 °C (2550 °F) for 1 h. 500×
More
Image
Published: 01 January 2005
Book Chapter
Joining of Ceramics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003056
EISBN: 978-1-62708-200-6
..., and the more advanced joining of nonoxide ceramics. It also discusses metallizing, brazing, diffusion bonding, and chemical bonding. brazing ceramic-ceramic joining ceramic-metal joining chemical bonding diffusion bonding glass-metal sealing metallizing nonoxide ceramics MANY APPLICATIONS...
Abstract
Many applications of ceramics and glasses require them to be joined to each other or to other materials such as metals. This article focuses on ceramic joining technologies, including glass-metal sealing, glass-ceramic/metal joining, ceramic-metal joining, ceramic-ceramic joining, and the more advanced joining of nonoxide ceramics. It also discusses metallizing, brazing, diffusion bonding, and chemical bonding.
Book Chapter
Solid-State Welding Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
... are engulfed within grains where they are no longer in contact with a grain boundary. During this third stage of bonding, the voids are very small and very likely have no impact on interface strength. Again, diffusional processes cause the shrinkage and elimination of voids, but the only possible diffusion...
Abstract
This article describes the mechanism, advantages and disadvantages, fundamentals, capabilities, variations, equipment used, and weldability of metals in solid-state welding processes, including diffusion bonding, explosion welding, friction welding, ultrasonic welding, upset welding, and deformation welding.
1