1-20 of 936

Search Results for die manufacture

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005158
EISBN: 978-1-62708-186-3
..., especially those made of hardened die steel and tungsten carbide in many forms, such as plastic injection molds, extrusion dies, forging dies, and die casting dies. Traveling-wire EDM differs from conventional (shaped electrode) EDM in that a thin-diameter wire acts as the electrode. Electrical discharge...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004041
EISBN: 978-1-62708-185-6
... Abstract This article reviews the methods of machining and finishing forging dies. It illustrates different stages in die manufacturing. The article provides a brief description on requirements and characteristics of high-speed machining tools, including feed rates, spindle speed, surface...
Image
Published: 01 January 2005
Fig. 1 Information flow and processing steps in die manufacturing. CMM, coordinate measuring machine; CNC, computer numerical control; EDM, electrical discharge machining More
Image
Published: 01 January 2005
Fig. 28 Manufacture of blanks in a lower container die. (a) Billet centered on press table. (b) Billet is upset. (c) Blank is indented and formed by backward extrusion. (d) Blank is pierced and ready for removal. More
Image
Published: 01 January 2005
Fig. 13 Multiple-die ironing operation for the manufacture of beverage cans. See text for details. More
Book Chapter

By G.W. Kuhlman
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
..., and die manufacture. The article discusses the critical aspects of various manufacturing elements of aluminum alloy forging, including the preparation of the forging stock, preheating stock, die heating, lubrication, trimming, forming and repair, cleaning, heat treatment, and inspection. It concludes...
Image
Published: 01 January 2005
Fig. 11 Largest closed-die titanium alloy forging ever manufactured, a Boeing 747 main landing gear beam. Area, 4 m 2 (6200 in. 2 ); weight, 1630 kg (3600 lb). Part was produced on a 450 MN (50,000 tonf) hydraulic press. Dimensions given in inches More
Image
Published: 01 January 2006
Fig. 3 Ranges of punch-to-die clearance per side recommended by one manufacturer for piercing and blanking of various metals up to 3.18 mm (0.125 in.) thick Group Clearance per side, % of stock thickness (a) Average Range 1. Aluminum alloys 1100 and 5052, all tempers 2.25 More
Book Chapter

By Tiffany A. Dux
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006493
EISBN: 978-1-62708-207-5
...-integrity mechanical parts. Although forgings constitute a small percentage of the total aluminum usage, their importance is key for critical load-transmission applications. The cost of producing forgings is high due to the high cost of die design and manufacture. Nonetheless, computer technology continues...
Book Chapter

By George F. Vander Voort
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... Abstract This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool...
Book Chapter

By R.E. Montero, L.G. Housefield, R.S. Mace
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003985
EISBN: 978-1-62708-185-6
... are required. A set of TZM forge dies used in the manufacture of P/M superalloy components will typically cost between two and four times more than a set of conventional dies used in the hot-die process. Cost will depend on their size and complexity, and TZM dies can take up to several months to manufacture...
Book Chapter

By G.W. Kuhlman
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
... of the final machined part. Figure 8(a) to (c) illustrate one cross section from this forging and the three types of closed-die forging approaches used to manufacture this very large part. Fig. 7 Boeing 757 main landing gear beam forged of alloy Ti-6Al-4V using three available closed-die forging...
Book Chapter

By Frank F. Kraft, Jay S. Gunasekera
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004006
EISBN: 978-1-62708-185-6
... are more difficult and costly to design and manufacture, and they are generally used for the hot extrusion of steels, titanium alloys, high-strength aluminum alloys such as 2 xxx and 7 xxx alloys, and other metals. Die Design Die design is a crucial aspect of the extrusion process that embodies...
Book Chapter

By George F. Vander Voort
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
... Abstract This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold...
Book Chapter

By Yeou-Li Chu
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... Abstract High-pressure die casting is a fast method for the net shape manufacturing of parts from nonferrous alloys. This article reviews the automation technologies for the different stages or steps of the process. These steps include liquid metal pouring, injection, solidification, die open...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
... involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003790
EISBN: 978-1-62708-177-1
... With an understanding of semisolid metal behavior, several new net-shape manufacturing processes were developed based on closed-die forging, die casting, extrusions, rolling, and hybrids of these processes ( Ref 1 , 2 , 3 ). Since its conception, semisolid metalworking has been applied to numerous metal alloy systems...
Book Chapter

By John R. Dixon
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002426
EISBN: 978-1-62708-194-8
... these decisions are tentative, and advice should be sought from a manufacturing expert, it is really impossible to do much DFM in these processes until they are made. An easy-to-manufacture part must be easily ejected from the die, and dies will be less expensive if they do not require special moving parts...
Book Chapter

By James A. Rossow
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001021
EISBN: 978-1-62708-161-0
... Abstract Forgings are classified in various ways, beginning with the general classifications open die and closed die. They are also classified according to how they are made; such as hammer upset forgings, ring-rolled forgings, and multiple-ram press forgings; and in terms of the close...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005219
EISBN: 978-1-62708-187-0
... initiated by the casting supplier or customer. Tools (tooling) are a pattern or die. Ownership It is customary in the casting business that ownership of tooling resides with the original equipment manufacturer (OEM). This is not the only contract; other arrangements have been defined...