Skip Nav Destination
Close Modal
Search Results for
die inserts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 492
Search Results for die inserts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Image
Published: 01 December 1998
Fig. 15 Two types of die inserts used in hammer forging. (a) Full insert and master block for use in forging of gear blanks in hammers. (b) Multiple-impression insert for use when wear is excessive on one or more impressions. Such an insert is usually secured by a key.
More
Image
Published: 01 January 2002
Fig. 40(a) Fractured section of an AISI W2 die insert that cracked during rehardening. The horizontal arrow shows the origin of the failure, which corresponds to the center of the billet used to make the insert. 0.3×
More
Image
Published: 01 January 2002
Fig. 34 Light micrograph of a grossly overaustenitized AISI D2 draw die insert. Specimen etched with Marble's reagent
More
Image
Published: 01 January 2005
Fig. 54 The failure mode of the die insert in the first station was a low-cycle fatigue fracture, as shown.
More
Image
Published: 30 August 2021
Fig. 40 (a) Fractured section of an AISI W2 die insert that cracked during rehardening. The horizontal arrow shows the origin of the failure, which corresponds to the center of the billet used to make the insert. Original magnification: 0.3×. (b) Disk that was cut through the origin
More
Image
Published: 01 November 2010
Fig. 54 The failure mode of the die insert in the first station was a low-cycle fatigue fracture, as shown
More
Image
Published: 15 January 2021
Fig. 43 Light micrograph of a grossly overaustenitized AISI D2 draw die insert. Specimen etched with Marble’s reagent
More
Image
Published: 01 January 2006
Image
Published: 01 January 2005
box furnace Heating time 1 h Atmosphere Slightly oxidizing Die material 6G at 388–429 HB (a) Die life, total 507–2067 forgings (b) Die lubricant Graphite-oil Production rate 50 forgings per hour (c) (a) Inserts at this hardness were used in die blocks of the same
More
Image
Published: 31 October 2011
Fig. 1 Typical example of equipment and schematic for resistance projection welding. Tooling is platen mounted and consists of water-cooled copper blocks, welding die inserts, and locators. Courtesy of Taylor-Winfield Technologies, Inc.
More
Image
Published: 01 January 2005
Fig. 55 The contours of maximum principal stress on the original design are shown, with the dark colors representing tension and the light colors representing compression. The tensile stress on the inside of the shrink ring is expected. The tensile stress at the inside corner of the die insert
More
Image
Published: 01 November 2010
Fig. 55 The contours of maximum principal stress on the original design are shown, with the dark colors representing tension and the light colors representing compression. The tensile stress on the inside of the shrink ring is expected. The tensile stress at the inside corner of the die insert
More
Image
Published: 30 September 2015
Fig. 52 Microstructure of a copper infiltrated valve seat insert die compacted from a mixture of water atomized HSS, solid state lubricant and intermetallic phase powders. Courtesy of Bleistahl
More
Image
Published: 01 December 2008
Fig. 10 Robot inserting cast iron component for high-pressure die casting engine block production
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003975
EISBN: 978-1-62708-185-6
... on the factors that affect die life and safety precautions to be considered during die construction. cast dies die inserts fabrication hammers hardenability heat treatment horizontal forging machines hot forging hot-work tool steels impression dies mechanical fatigue plastic deformation...
Abstract
This article addresses dies and die materials used for hot forging in vertical presses, hammers, and horizontal forging machines (upsetters). It reviews the properties of die materials for hot forging, including good hardenability, resistance to wear, plastic deformation, thermal fatigue, and mechanical fatigue. The article describes heat treating practices commonly employed for chromium- and tungsten-base AISI hot-work tool steels. It discusses the fabrication of impression dies, and the advantages and disadvantages of cast dies. The article concludes with a discussion on the factors that affect die life and safety precautions to be considered during die construction.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
..., part extraction, die lubrication, insert loading, and die close. Some manual aspects of the operations, together with automation options, are discussed. The article describes finishing steps, such as finish trimming, detailed deflashing, shot blast cleaning, and quality checks. Automation...
Abstract
High-pressure die casting is a fast method for the net shape manufacturing of parts from nonferrous alloys. This article reviews the automation technologies for the different stages or steps of the process. These steps include liquid metal pouring, injection, solidification, die open, part extraction, die lubrication, insert loading, and die close. Some manual aspects of the operations, together with automation options, are discussed. The article describes finishing steps, such as finish trimming, detailed deflashing, shot blast cleaning, and quality checks. Automation of the postcasting process is also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004024
EISBN: 978-1-62708-185-6
... is numerically transformed into thin slices on the order of about 75 to 250 μm (0.003 to 0.010 in.). Fig. 1 Selective laser sintering technique. Source: Ref 7 Rapid prototyping of a steel die is described in Ref 2 for a process used to create steel/copper mold inserts for injection molding...
Abstract
This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net shape process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
.... Relatively small “die inserts” usually are used in mechanical presses. This saves expensive die material and the machining required on large die blocks. The dies are set in recesses in holders fastened to the ram and bed of the press. The dies are held in the recesses by clamps, and screws extending through...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... press fitting or shrink fitting of dies and die inserts, or lack of control of forging load and energy. Materials for Dies A wide range of materials are available to the designer of tools and dies. This section summarizes the important attributes required of dies and the properties of the various...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
1