1-20 of 281 Search Results for

die hardness

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
... of strength, creep, and fatigue strength ( Ref 5 ). The rate of cooling from the solution treating temperature to ambient affects subsequent age-hardened strength and hardness. Extremely slow cooling is detrimental, due to diffused α phase affecting the amount of available β phase for...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... Abstract High-pressure die casting is a fast method for net shape manufacturing of parts from nonferrous alloys. This article reviews the automation technologies for the different stages or steps of the process. The steps include liquid metal pouring, injection, solidification, die open, part...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
..., Pittsburgh, to cast and roll a steel plow, which it accomplishes at one-half the previous cost of the product. 1849—A manually operated die casting machine is patented to supply rapidly cast lead type for newspapers. 1850—Drop-bottom cupola is developed. 1863—Metallography is developed by Henry C...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... possible plastic deformation before fracture (ductility). Therefore, a complete description of the workability of a material is specified by its flow stress dependence on processing variables (for example, strain, strain rate, preheat temperature, and die temperature), its failure behavior, and the...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... determination of the extent of possible plastic deformation before fracture (ductility). Therefore, a complete description of the workability of a material is specified by its flow stress dependence on processing variables (for example, strain, strain rate, preheat temperature, and die temperature), its failure...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... , Ref 53 , Ref 54 ). In hot forming applications, hard coatings are generally used. They are applied to the die surface by mechanical, thermal, or chemical means. A hard surface layer reduces the frictional force and the wear rate when sliding against a relatively soft workpiece material if the...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004041
EISBN: 978-1-62708-185-6
... may cause some distortion, and then EDMed to final dimensions. The trend in die manufacturing today is toward hard machining, both in roughing and finishing, and in replacing EDM whenever possible. The term “hard” refers to the hardness of the die material, which is usually in the range of 45 to 62...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003975
EISBN: 978-1-62708-185-6
..., such as automotive forgings, which are produced at rates of 120 to 150 pieces/h, the dies cool off enough between blows to allow the use of die materials with lower hot strength. The high-alloy high-hardness upsetting tools used in the bolt industry are not suitable for medium-size automotive upset...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
... long runs and high dimensional accuracy, hot worked tool steels such as H13 will provide optimal die life. The die hardness is also less critical for alloys of higher casting temperature. Steels prehardened by the manufacturer to any maximum hardness content with reasonable machinability can be used...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
... to Table 1 . Table 1 Steel and hardness recommendations for die casting dies and associated tooling Die components Fig. 1 part Alloy to be cast Tin, lead, zinc Aluminum, magnesium Copper, brass Cavity inserts 1 P20 at 290–330 HB (a) H13 at 42–48 HRC DIN 1.2367 at 38...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005276
EISBN: 978-1-62708-187-0
... to the die casting die via a combination of hard and flexible piping. In some variations of the process, the vacuum is also used to suck the molten metal through a tube into the shot sleeve, and the shot hole is closed mechanically or by the advancing piston ( Fig. 1 ). The theory behind vacuum...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003979
EISBN: 978-1-62708-185-6
... Abstract This article provides an overview of the capabilities of closed-die forging. One of the most important aspects of closed-die forging is proper design of preforming operations and of blocker dies to achieve adequate metal distribution. The article describes the effects of friction and...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003978
EISBN: 978-1-62708-185-6
... Abstract Open-die forging can be distinguished from most other types of deformation processes in that it provides discontinuous material flow as opposed to continuous flow. This article describes the equipment and auxiliary tools used in open-die forging. It discusses the production and...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001243
EISBN: 978-1-62708-170-2
... instances where sticking is encountered with plain steel surfaces. If deep drawing tools are chromium plated, the base metal should be harder than 50 HRC. Steel dies used for drawing bars and tubes are often plated with relatively heavy thicknesses (up to 250 μm, or 10 mils) of chromium to minimize die wear...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009005
EISBN: 978-1-62708-185-6
... moderate draft angles (3 to 5°), and hard-to-work alloys, such as nickel-base superalloys, need large draft angles (7° or greater) because of higher forging pressures and a greater tendency for sticking in the dies ( Ref 2 ). Radii are also important in die design, because an insufficient radius may lead...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
... typically used at lower hardness levels in order to improve their fracture toughness. Commercially available die materials were primarily designed for the forging of steels and are not necessarily optimized for the demands of aluminum alloy forging processes. However, with advanced steelmaking technology...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003987
EISBN: 978-1-62708-185-6
... vacuum-melted or electroslag-remelted 52100 steel provides the clean microstructure necessary for the development of critical polished die surfaces. This steel is used primarily for ball bearings, but it also works well for coining dies. When heat treated to a hardness of 59 to 61 HRC, 52100 steel...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... Brinell hardness is 105 to 115 (500 kg, 10 Mn). The lower aluminum alloys, Alloys 2, 3, 5, and 7, are always cast in hot-chamber zinc die casting machines. ZA-8 can be hot-chamber die cast and is also permanent mold cast. As a pressure die casting, it has excellent properties, especially creep, compared...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... based on aluminum content: the hypoeutectic alloys with approximately 4% Al for optimal mechanical properties, and the hypereutectic alloys with >5% Al for additional strength, hardness, and stiffness (but at the price of lower ductility). The die casting alloys are basically a family of Zn-4Al...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
... set of die blocks, two or more hammers are used to produce adequate shaping or blocking to an intermediate shape before the final die is used. The greater striking forces developed with power-drop hammers give rise to several disadvantages. As much as 15 to 25% (and, in hard finishing blows, up to...