1-20 of 20

Search Results for die forger hammers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
... Abstract Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
..., and potentially damaging, shocks in the surrounding floor area. This necessitates the need for shock absorbing materials, such as timber or iron felt, in anvil-block foundations, adding appreciably to foundation cost. Die-Forger Hammers Similar in operation to power-drop hammers, die-forger hammers have...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003992
EISBN: 978-1-62708-185-6
... to produce blocker-type, conventional, and close-tolerance forgings. Selection from the above closed-die types invariably depends on quantity and the cost of the finished part. Additional information on these types of products is available in the article “Closed-Die Forging in Hammers and Presses...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... where velocity is the major energy component (i.e., power hammer or drop hammer forging). Thus, the act of bringing the die halves together precisely can be a daunting task. As a result, the dimensional specifications for forgings will often take into account the difficulties in achieving some...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003994
EISBN: 978-1-62708-185-6
...; they are not normally forged before extruding, except at extremely high temperatures. A minimum extrusion ratio for adequate forgeability is 4 to 1. Molybdenum is frequently hammer forged if at all possible, because its high thermal conductivity and low specific heat render it susceptible to die chill. Hammer...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
..., such as hammers, mechanical/screw presses, and hydraulic presses. Spin Forging Spin forging can also be used in titanium alloy forging fabrication, as with aluminum and other materials. This technique combines closed-die forging and computer numerically controlled (CNC) spin forgers and achieves very close...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
... of more rapid deformation processes, such as hammers and mechanical or screw presses. Die heating techniques are discussed in the section “Heating of Dies” in this article. Die temperature ranges for the forging of aluminum alloys Table 2 Die temperature ranges for the forging of aluminum alloys...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006493
EISBN: 978-1-62708-207-5
... such as workpiece and die temperature, strain rate, and deformation mode. The article describes the relative forgeability of the ten most widely used aluminum alloys, and reviews common forging equipment, including hammers, mechanical and screw presses, and hydraulic presses. It also discusses postforge operations...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
... to the complications associated with its radioactivity, although the high-temperature properties of thorium-bearing alloys are impressive. Silver (Q) and copper (C) containing alloys have also been developed, and recent work in the area of high-pressure die-casting alloys has come to focus on additions of other...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005888
EISBN: 978-1-62708-167-2
... to an increased popularity of heating by induction are discussed in Ref 1 , 2 , 3 , 4 , 5 , 6 . Billets and bars are heated either fully ( Fig. 1 ) or partially, either in cut lengths or continuously, and are forged in presses, hammers (repeated blows), or upsetters (which gather and form the metal...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... alloys. The procedures, however, are generally different from those used for similar shapes from carbon or low-alloy steels (see the article “Closed-Die Forging in Hammers and Presses” in this Volume). For example, preforms made by open-die forging, upsetting, rolling, or extrusion are used...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003986
EISBN: 978-1-62708-185-6
... . In very stiff presses this variation will be small, and thus stiff presses are considered more suitable for precision forging. Hammers and screw presses can forge to a precise thickness dimension because they can forge “die to die.” In these cases, kissing surfaces of the dies make contact when the finish...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003991
EISBN: 978-1-62708-185-6
... by the cooling that occurs when the heated workpiece comes into contact with the cold dies. For this reason, equipment that has relatively short die contact times, such as hammers, is often preferred for forging intricate shapes in steel. Adequate control of metal flow to optimize properties in complex forging...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
... forging can be significantly higher than forging at traditional temperatures due to higher flow stress. These increased loads can reduce die life. Warm forging can also produce better microstructures so that the component may not require subsequent heat treatment. The tooling for warm forming is generally...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... by the cooling that occurs when the heated workpiece comes into contact with the cold dies. For this reason, equipment that has relatively short die contact times, such as hammers, is often preferred for forging intricate shapes in steel. Because forging is a complex process, a single test cannot be relied...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... bursts or chevron cracks, cracks on free surfaces, cracks on die-contacted surfaces Metal-flow-related problems: for example, end grain and poor surface performance; inhomogeneous grain size; shear bands and locally weakened structures; cold shuts, folds, and laps; flow-through defects Control...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001046
EISBN: 978-1-62708-161-0
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.9781627081672
EISBN: 978-1-62708-167-2