Skip Nav Destination
Close Modal
By
Mitchell P. Kaplan, John W. Lincoln
By
T. Swift
By
David Broek
By
Craig L. Brooks, Kyle T. Honeycutt, Thomas B. Mills
By
F.W. Zok
Search Results for
design tolerance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1504
Search Results for design tolerance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Forging Design Dimensions and Tolerances
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004035
EISBN: 978-1-62708-185-6
... Abstract The design of forging operations; consisting of dies, fixturing, and parts; requires a consistent and unambiguous method for representing critical dimensions and tolerances. This article presents a dimensioning process, based on tooling points and datum planes, with the potential...
Abstract
The design of forging operations; consisting of dies, fixturing, and parts; requires a consistent and unambiguous method for representing critical dimensions and tolerances. This article presents a dimensioning process, based on tooling points and datum planes, with the potential to simplify geometries while minimizing tolerance stack-ups. The method also facilitates inspection liaison between vendors and users because fixturing is easy to duplicate and tooling points are consistent from forging to finish-machined part. The article focuses on the most common dimensional tolerances for closed-die forgings, including finish allowances for machining, length and width tolerances, die-wear tolerance, match tolerances, die-closure or thickness tolerances, straightness and flatness tolerances, radii tolerances, flash-extension tolerances, and surface tolerances. It also contains a convenient summary in the form of a checklist.
Image
Damage tolerance of a metallic structure based on initial design. Flaw size...
Available to PurchasePublished: 01 January 2001
Fig. 1 Damage tolerance of a metallic structure based on initial design. Flaw size (broken line) and residual strength (solid line) are plotted versus time.
More
Image
Damage tolerance of a composite structure based on initial design. Flaw siz...
Available to PurchasePublished: 01 January 2001
Fig. 3 Damage tolerance of a composite structure based on initial design. Flaw size (broken line) and residual strength (solid line) are plotted versus time. The step function nature of the curves represents large growths in the degradation associated with the highest load cycles in each block
More
Book Chapter
The U.S. Air Force Approach to Aircraft Damage Tolerant Design
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002394
EISBN: 978-1-62708-193-1
... Abstract The inclusion of damage tolerance design and a systematic review of design procedures allow the U.S. Air Force to design, manufacture, and maintain systems that are structurally safe and economically prudent. After a brief introduction of fracture mechanics, this article describes...
Abstract
The inclusion of damage tolerance design and a systematic review of design procedures allow the U.S. Air Force to design, manufacture, and maintain systems that are structurally safe and economically prudent. After a brief introduction of fracture mechanics, this article describes the particular aspects that relate to damage tolerance in aircraft design. It discusses the use of fracture mechanics as a method of predicting failure, understanding failure mechanisms, and suggesting inspection methods to protect against failure in pressure vessels. Various programs of U.S. Air Force to design aircraft structure, namely, airframe structural integrity programs, engine structural integrity program, and mechanical subsystems structural integrity program are also discussed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002435
EISBN: 978-1-62708-194-8
... Abstract This article addresses problems, such as “in spec” dilemma and on-target key, associated with traditional approaches to quality. It discusses major robust design techniques, tools, and concepts, such as quality loss function, parameter design, tolerance design, signal-to-noise ratio...
Abstract
This article addresses problems, such as “in spec” dilemma and on-target key, associated with traditional approaches to quality. It discusses major robust design techniques, tools, and concepts, such as quality loss function, parameter design, tolerance design, signal-to-noise ratio, technology development, and orthogonal arrays.
Image
This close-tolerance sand casting, although designed to be cast from 4340 s...
Available to PurchasePublished: 01 December 2008
Fig. 43 This close-tolerance sand casting, although designed to be cast from 4340 steel, was produced in type 431 stainless because of the foundry's greater experience with stainless steel. Increase in material cost was more than offset by higher percentage of acceptable castings.
More
Image
This close-tolerance sand casting, although designed to be cast from 4340 s...
Available to PurchasePublished: 01 December 2008
Fig. 6 This close-tolerance sand casting, although designed to be cast from 4340 steel, was produced in type 431 stainless because of the foundry's greater experience with stainless steel. Increase in material cost was more than offset by higher percentage of acceptable castings.
More
Image
Published: 01 August 2018
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002447
EISBN: 978-1-62708-194-8
... the simulation model in terms of a functional feature product model, component part variation, assembly method variation, measurement schemes, and assembly sequences. dimensional management product design tolerance analysis DIMENSIONAL MANAGEMENT is an engineering methodology combined with computer...
Abstract
The objective of dimensional management is to create a design and process that absorbs as much variation as possible without affecting the function of the product. This article describes the steps followed by the dimensional management process. These include defining product dimensional requirements, determining process and product requirements, ensuring accurate documentation, developing a measurement plan that validates product requirements, establishing manufacturing capabilities versus design intent, and establishing production-to-design feedback loop. The article discusses the simulation model in terms of a functional feature product model, component part variation, assembly method variation, measurement schemes, and assembly sequences.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
... summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms...
Abstract
This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. It presents a brief introduction on the durability impact threat, damage tolerance impact threat, and other damage tolerance damage threats. The article summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms of the mechanics based model, the regression algorithm, and the semi-empirical analysis.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003176
EISBN: 978-1-62708-199-3
... Abstract This article provides general guidelines for casting design to provide progressive solidification, minimize heat concentration, eliminate cores, and prevent distortion. Casting design also affects tolerances. Casting tolerances depend on the alloy being poured, the size of the casting...
Abstract
This article provides general guidelines for casting design to provide progressive solidification, minimize heat concentration, eliminate cores, and prevent distortion. Casting design also affects tolerances. Casting tolerances depend on the alloy being poured, the size of the casting, and the molding method used. Designers can predict the effect of the design on the structure of the final part using solidification simulation models, namely finite element and finite difference models, and rapid prototyping. The article concludes with a short note on how the quality is assured in the foundry.
Book Chapter
Damage Tolerance Certification of Commercial Aircraft
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
... in Advisory Circular 25.571-1A from the Federal Aviation Administration. It provides an overview of the historical evolution of damage tolerance philosophy and presents a discussion of the design philosophies and a summary of the evaluation tasks for damage tolerance certification. commercial transport...
Abstract
Damage tolerance is a philosophy used for maintaining the structural safety of commercial transport aircrafts. This article describes the structural evaluations necessary to comply with the regulations contained in the Federal Air worthiness Requirements 25.571 whose guidance is given in Advisory Circular 25.571-1A from the Federal Aviation Administration. It provides an overview of the historical evolution of damage tolerance philosophy and presents a discussion of the design philosophies and a summary of the evaluation tasks for damage tolerance certification.
Book Chapter
Aluminum Wrought Products
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003125
EISBN: 978-1-62708-199-3
... shapes; forgings; and impacts. The article provides information on product economics, design and selection, including product dimension and dimension tolerances, and design and use of wrought product capabilities. Finally, it tabulates the specifications and standards for aluminum mill products...
Abstract
This article discusses the classification, characteristics and temper designations of wrought aluminum alloys. Wrought aluminum products are available as flat-rolled products such as sheets, plates, and foils; rods, bars, and wires; tubular products such as tubes and pipes; extruded shapes; forgings; and impacts. The article provides information on product economics, design and selection, including product dimension and dimension tolerances, and design and use of wrought product capabilities. Finally, it tabulates the specifications and standards for aluminum mill products.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
... and speed. The article also describes the functions of the tooling which involves supplying of molten alloy to the casting machine and injecting it into the die. die casting tooling materials selection failure modes wear die casting dies product design design tolerance air venting shrinkage...
Abstract
The designer of die casting tooling must balance the functional requirements of the part being cast with the cost, speed, and quality requirements of the process. In addition, attention must also be paid to the capacity and operating parameters of the casting machines being used and the need and economics of postprocessing. This article examines how design and materials selection address these diverse requirements of conventional die casting tooling. It focuses on the tooling for high-volume processes where the liquid or semisolid metal is forced into the die with high pressure and speed. The article also describes the functions of the tooling which involves supplying of molten alloy to the casting machine and injecting it into the die.
Book Chapter
Concepts of Fracture Control and Damage Tolerance Analysis
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002381
EISBN: 978-1-62708-193-1
... principles of fracture control and reviews the concepts of damage tolerance analysis. It further presents practical guidelines to obtain useful and reasonable answers from damage tolerance analysis. The article concludes with information on fracture mechanics and fatigue design. damage tolerance...
Abstract
Fracture control is a systematic process to prevent fracture during operation that depends on the criticality of the component, the economic consequences of the structures being out of service, and the damage that would be caused by a fracture failure. This article describes the key principles of fracture control and reviews the concepts of damage tolerance analysis. It further presents practical guidelines to obtain useful and reasonable answers from damage tolerance analysis. The article concludes with information on fracture mechanics and fatigue design.
Book Chapter
Predictive Modeling of Structure Service Life
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003706
EISBN: 978-1-62708-182-5
... in order to consider the effects of corrosion. These philosophies include crack initiation used for safe-life design and crack growth used for damage tolerance. The article presents the methodology for computing the effects of real-time age degradation on an aircraft structure for two different corrosion...
Abstract
This article discusses corrosion fatigue, its effects on the damage tolerance of aircraft, and its predictive modeling. A conceptual framework is presented that incorporates two distinctive cyclic-based life-prediction philosophies and expands them both to include the time domain in order to consider the effects of corrosion. These philosophies include crack initiation used for safe-life design and crack growth used for damage tolerance. The article presents the methodology for computing the effects of real-time age degradation on an aircraft structure for two different corrosion types: crevice and pitting corrosion. It describes the rationale and techniques needed to apply the age-based structural integrity processes to in-service structures in order to realize the benefits throughout the full structural life cycle.
Book Chapter
Fracture Analysis of Fiber-Reinforced Ceramic-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003400
EISBN: 978-1-62708-195-5
...-tolerant failure prediction methodologies for use in engineering design. It outlines a general framework for the description of fracture in structural materials in the presence of notches and cracks. The article describes the common classes of fracture behavior of CFCCs and presents the constitutive laws...
Abstract
One of the key attributes of continuous fiber-reinforced ceramic composites (CFCCs) is their ability to undergo inelastic straining upon mechanical loading. This article reviews the mechanics of inelastic deformation and fracture of CFCCs, as needed for the development of damage-tolerant failure prediction methodologies for use in engineering design. It outlines a general framework for the description of fracture in structural materials in the presence of notches and cracks. The article describes the common classes of fracture behavior of CFCCs and presents the constitutive laws needed to describe crack-tip inelasticity. It demonstrates the effects of inelasticity on crack-tip stress fields and addresses the environmental degradation effects on damage tolerance.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided...
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009020
EISBN: 978-1-62708-187-0
... operations in design. The article describes the factors that control casting tolerances and presents specific tips for designing castings with uniform wall thickness, unequal sections, thin sections, economical coring, functional packaging, and core design. The article provides a framework for analyzing all...
Abstract
Casting offers a great amount of component design flexibility. This article discusses six casting design parameters that drive the geometry of casting design from a process standpoint. It provides information on the design of junctions and addresses considerations of secondary operations in design. The article describes the factors that control casting tolerances and presents specific tips for designing castings with uniform wall thickness, unequal sections, thin sections, economical coring, functional packaging, and core design. The article provides a framework for analyzing all manners of manufacturing as possible conversion candidates for casting. It concludes with a discussion on different metalcasting design projects.
Book Chapter
Design Considerations for Advanced Ceramics for Structural Applications
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... Abstract The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
1