Skip Nav Destination
Close Modal
By
ASM International Materials Life-Cycle Analysis Committee, Hans H. Portisch, Steven B. Young, John L. Sullivan, Matthias Harsch ...
Search Results for
design engineering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2425
Search Results for design engineering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1997
Fig. 1 Design-engineering process. The goal is to meet the end-use requirements the first time with the lowest cost.
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
... Abstract The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause...
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003458
EISBN: 978-1-62708-195-5
... steps for an engineering repair approach to effectively restore structural integrity to damaged composite components. Management, validation and certification of repairs are also discussed. The article presents the design guidelines for analyzing the damage and possible strategies for making a repair...
Abstract
This article discusses three typical repair types for composite structures: temporary repairs, adhesively bonded repairs, and bolted repairs. It contains a table that lists general design requirements and considerations for the repair of composite structures. The article describes ten steps for an engineering repair approach to effectively restore structural integrity to damaged composite components. Management, validation and certification of repairs are also discussed. The article presents the design guidelines for analyzing the damage and possible strategies for making a repair. It reviews three repair schemes used in repair design analysis, namely, core replacement, adhesively bonded patch, and mechanically fastened patch. The article also emphasizes the various pitfalls and problems in repair design for composite structures.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003376
EISBN: 978-1-62708-195-5
... Abstract Composite materials offer amazing opportunities for delivering structures that are optimized to meet design requirements. This article provides a summary of the concepts discussed in the articles under the section “Engineering Mechanics, Analysis, and Design” in ASM Handbook, Volume 21...
Abstract
Composite materials offer amazing opportunities for delivering structures that are optimized to meet design requirements. This article provides a summary of the concepts discussed in the articles under the section “Engineering Mechanics, Analysis, and Design” in ASM Handbook, Volume 21: Composites. The section introduces many of the engineering approaches used in composite industry.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
... 8.5 14.5 60 830 1525 2.568 1.537 87 12.6 Source: Glass Engineering Handbook, 2nd ed., McGraw-Hill, 1958, p 17 Glass compositions that do not fall into one of these broad categories are generally known as specialty glasses. Selection of the glass composition for a particular...
Abstract
This article describes the chemical composition, physical properties, thermal properties, mechanical properties, electrical properties, optical properties, magnetic properties, and chemical properties of glasses, glass-matrix composites, and glass-ceramics.
Book Chapter
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002433
EISBN: 978-1-62708-194-8
... between producers and suppliers is necessary to find processes that will reduce environmental impacts. Conclusions Life-cycle engineering—in particular, life-cycle assessment—is gaining importance for design and materials engineers because environmental considerations are increasingly important...
Abstract
Life-cycle engineering is a part-, system-, or process-related tool for the investigation of environmental parameters based on technical and economic measures. This article focuses on life-cycle engineering as a method for evaluating impacts. It describes the four steps of life-cycle analysis, namely, goal definition and scoping, inventory analysis, impact assessment and interpretation, and improvement analysis. The article discusses the applications of life-cycle analysis results and presents a case history of life-cycle analysis of an automobile fender.
Image
Published: 01 January 2002
Image
Published: 01 January 2006
Image
in Introduction and Overview of Design Considerations and Materials Selection
> Metals Handbook Desk Edition
Published: 01 December 1998
Image
Published: 01 November 1995
Fig. 4 Engineering design drawing for a syrup bottle. The lower part of the figure shows the manufacturer's identification markings located at the bottom or heel of the container.
More
Image
in Engineering Design Process Investigation in a Failure Analysis
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
Published: 01 December 2009
Fig. 5 Engineering component design processes. Left side depicts a hardware-based approach; right side is an analysis-(computational fluid dynamics, or CFD-) based approach. CAD, computer-aided design
More
Image
Published: 01 February 2024
Fig. 83 Engineering design process. Left side depicts a hardware-based approach; right side is an analysis (computational fluid dynamics)-based approach. CAD, computer-aided design. Source: Ref 80
More
Image
Published: 01 January 1997
Image
Published: 01 January 1997
Fig. 4 Two approaches to problem solving during engineering design. (a) Traditional one-factor-at-a-time approach. (b) Taguchi parameter design approach
More
Image
Published: 01 January 1997
Fig. 5 Engineering component design processes. Left-hand side depicts a hardware-based approach; right-hand side is an analysis- (CFD-) based approach.
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002423
EISBN: 978-1-62708-194-8
... the Section “The Role of the Materials Engineer in Design” in ASM Handbook, Volume 20: Materials Selection and Design. design tools material design material selection materials engineers THE ROLE of the materials engineer in the design and manufacture of today's highly sophisticated products...
Abstract
This article discusses the various roles and responsibilities of materials engineers in a product realization organization and suggests different ways in which materials engineers may benefit their organization. It also provides a summary of the concepts discussed in the articles under the Section “The Role of the Materials Engineer in Design” in ASM Handbook, Volume 20: Materials Selection and Design.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... Abstract This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides...
Abstract
This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides general design rules for the plastic forming processes covered. It also discusses the steps involved in design validation and verification.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003396
EISBN: 978-1-62708-195-5
... Abstract Affordability is the key issue facing design engineers and manufacturers of composite components for current and next-generation aircraft, spacecraft, propulsion systems, and other advanced applications. This article describes the software tools available for modeling and analyzing...
Abstract
Affordability is the key issue facing design engineers and manufacturers of composite components for current and next-generation aircraft, spacecraft, propulsion systems, and other advanced applications. This article describes the software tools available for modeling and analyzing costs associated with design and manufacturing options for advanced composites programs. It presents an example of a composite exhaust nozzle shroud where the design and manufacture options were analyzed and adjusted, based on the use of cost analysis tools. The article also lists some of the attributes found in various cost modeling software and the potential cost benefits.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
... Abstract Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more...
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
1