1-20 of 874

Search Results for deposition efficiency

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 August 2013
Fig. 4 Variation of cold spray deposition efficiency of titanium coatings with process parameters. SOD, standoff distance (nozzle); PFR, powder feed rate; T, temperature. Source: Ref 15 More
Image
Published: 01 January 1994
Fig. 4 Thickness of copper deposits as a function of cycle efficiency and current density during plating with periodic current reversal. Source: Ref 9 More
Image
Published: 01 January 1994
Fig. 19 Photomicrographs of chromium deposits (plated in a high-efficiency etch-free bath) after etching. (a) and (b) Deposit plated at 78 A/dm 2 (5 A/in. 2 ) and at 55 °C (130 °F). (a) 540×. (b) 2300×. (c) Cross section of a chromium deposit plated at 93 A/dm 2 (6 A/in. 2 ) and at 58 °C More
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... and the parameters that affect both the process deposition efficiency and properties of the prepared coatings. It describes a variety of cold spray coating materials, namely, pure metals, ferrous and nonferrous metal alloys, composites, and cermets. The article presents various industrial applications of cold spray...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... in.). Unlimited upper thickness, but other processes (GMAW, FCAW, or SAW) are usually more economical. A low-deposition-rate process (up to 9 kg/h, or 20 lb/h) with low deposit efficiency (typically 65%). Low operator factor. Equipment cost is low and spare parts are minimal. Welding speeds are generally low...
Image
Published: 01 January 1997
) Deposition efficiency 98% Length of weld (including runoff tabs at ends) 3.2 m (10 1 2 ft) Time for installing and removing backing strip (original design) 12 h Joint type Butt Weld types Single-V-groove (original); double-V-groove (improved) Welding position Flat (a) Arc More
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005725
EISBN: 978-1-62708-171-9
... control and from the variables influencing the manipulation of the spray torch. The article concludes with helpful information on calculating the process efficiency of thermal spraying. coating deposition coating design deposition efficiency masking process efficiency surface preparation...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001253
EISBN: 978-1-62708-170-2
... for copper, nickel, or even silver plating. If any factor changes, even 2 to 3%, the cathode gold deposition efficiency changes. If the efficiency decreases, items being plated under standard conditions will be underplated and the specified thickness will not be attained. Similarly, if the cathode efficiency...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
... with iron powder, the heat generated during welding is more efficiently used. Iron powder additions also allow electrodes to operate at higher amperages without overheating. Therefore, using iron powder in electrode coatings can result in improved welding efficiency and higher deposition rates...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
... <xref rid="a0001462-ref9" ref-type="bibr">(Ref 9)</xref> Table 5 gives the nominal thermal spray deposit efficiency and feedstock material required per unit area or unit thickness for representative materials sprayed onto a flat plate. Deposit efficiency is the percentage by weight of sprayed materials adhering to a large flat plate...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005749
EISBN: 978-1-62708-171-9
... deposition d day d depth; diameter DARPA Defense Advanced Research Projects Agency dB decibel dc direct current DE deposit efficiency d.f. degrees of freedom D-gun detonation gun diam diameter DIN Deutsche Industrie-Normen (German Industrial...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001242
EISBN: 978-1-62708-170-2
... most plating conditions, the high throwing power of the electrolyte produces adequate coverage of sufficient thickness in recessed areas. Antipitting additives are generally used in these baths to promote pore-free (nonpitted) deposits. Before being plated in the high-efficiency baths, parts must...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... of the plating solution gives an uneven surface coverage. Further, the low plating efficiencies can lead to high internal stresses from hydrogen uptake. The resulting microcracking has a detrimental effect on coating properties. It is difficult to deposit chromium from aqueous solutions because of its low...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... solution and must be replaced over time (continuously or periodically), because they are deposited onto the cathode and are depleted from the electroplating solution. Deposition Rate and Efficiency The rate of metal deposition onto the base material is directly proportional to the applied current...
Book Chapter

Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003685
EISBN: 978-1-62708-182-5
... process; therefore, to achieve efficiency of coverage and uniformity it is necessary to use multiple evaporation sources and to rotate or move the substrate uniformly to expose all areas. Unlike other vapor-deposition processes, evaporation is a low-energy process, with particle energy averaging 0.2...
Book Chapter

By A. Sato
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
... effluents. An alkaline noncyanide zinc bath with a zinc metal content of 7.5 to 12 g/L (1.0 to 1.6 oz/gal) used at 3 A/dm 2 (30 A/ft 2 ) produces an acceptably bright deposit at efficiencies of approximately 80%, as shown in Fig. 1 . However, if the metal content is allowed to drop 2 g/L (0.26 oz/gal...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001249
EISBN: 978-1-62708-170-2
... efficiency of the bath will be maintained within a range suitable for normal plating until the indium content is reduced. The plating rate should be checked at regular intervals, because as the bath is depleted a decrease in rate of deposition is to be expected. Indium fluoborate plating bath Table 3...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001244
EISBN: 978-1-62708-170-2
... of chromic acid to sulfate, generally given as the weight ratio of chromic anhydride to sulfate, governs the current efficiency for chromium metal deposition. The cathode current efficiency also is affected by solution variables, such as concentration of chromic acid, temperature, and content of metallic...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0009211
EISBN: 978-1-62708-194-8
... to have 79% greater material utilization efficiency, and the fabrication cost was reduced from $17,430 to $9,810. Kinsella investigated the deposition of IN-718 alloy features on a forged engine case. A 30% cost-savings was realized using electron beam wire deposition as compared to conventional...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
... Abstract This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC...