1-20 of 46 Search Results for

depleted uranium

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1989
Fig. 1 Normal flank wear encountered when cutting unalloyed, depleted uranium using two types of TNMP 432 carbide inserts (three views of each insert are shown). (a, b, c) Plain carbide (94WC-5.5Co-0.5TaC). (d, e, f) Titanium-nitride coated (TiC/TiCN/TiN coatings on a special-strengthened More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002192
EISBN: 978-1-62708-188-7
...Abstract Abstract This article focuses on the basic metallurgy and machining parameters of classes of depleted and enriched uranium alloys. It provides information on the health precautions applicable to the machining of depleted uranium alloys. The article also discusses tool wear...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001085
EISBN: 978-1-62708-162-7
... and precautions associated with processing depleted uranium and methods to control mild radioactivity, chemical toxicity, and pyrophoricity. It also describes the classification and heat treatment of uranium and uranium alloys. Furthermore, the article provides graphical representation of the effect of alloy...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003780
EISBN: 978-1-62708-177-1
...Abstract Abstract This article discusses the principles of physical metallurgy and metallography of depleted uranium. It describes the techniques involved in the preparation of thin foils for transmission electron microscopy and illustrates the resulting microstructure of uranium and uranium...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006256
EISBN: 978-1-62708-169-6
...Abstract Abstract Heat treatment of depleted uranium (DU) alloys with 4.0 wt% or more molybdenum or equivalent is similar to that of dilute alloys. This article discusses the metallurgical characteristics and processing considerations of DU and its alloys, and describes the control of grain...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003166
EISBN: 978-1-62708-199-3
... very high density materials: depleted uranium and tungsten and their alloys. applications depleted uranium design considerations health considerations mechanical properties metallurgy processing tungsten tungsten alloys uranium alloys very high density metals VERY HIGH DENSITY...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
... constituents, chemical degradation of interphases and reinforcements, microstructure-influenced corrosion, and processing-induced corrosion. The article elaborates on the corrosion behavior of specific aluminum, magnesium, titanium, copper, stainless steel, lead, depleted uranium, and zinc MMCs systems...
Image
Published: 01 January 1989
Fig. 3 Surface trace and surface finish of four identically machined metals and alloys. (a) Type 316 SS. (b) High-purity depleted uranium. (c) U-6Nb alloy. (d) U-0.75Ti alloy (age-hardened to 43 HRC). Identical test conditions include cutoff (0.8 mm, or 0.03 in.), drive speed (0.25 mm/s, or 0.01 More
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
..., but the uranium in the oxygen-depleted region near the center of the glass was deeply pitted ( Ref 4 ). Waber also observed the anodic control of uranium corrosion by observing the effects of dissolved oxygen and addition of cupric ions ( Ref 6 ). In addition to showing the effects of oxygen on E corr...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
...-alloy steels, 290–450 MPa (42–65 ksi) yield stress, wrought; as rolled 190 149 Depleted uranium 187 … Zirconium and its alloys 179 112 Stainless steels, standard austenitic grades, wrought; annealed 170 143 Aluminum alloys, 7000 series 160 60 Malleable ferritic cast irons 156...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003587
EISBN: 978-1-62708-182-5
... (LiF), beryllium fluoride (BeF 2 ), uranium tetrafluoride (UF 4 ), and thorium fluoride (ThF 4 ), that are not appreciably reduced by available structural metals and alloys whose components (iron, nickel, and chromium) can be in near-thermodynamic equilibrium with the salt. A continuing program...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006679
EISBN: 978-1-62708-213-6
... other ( Ref 12 ) Examination of corroded materials ( Ref 13 ) Determination of uranium and plutonium assays in nuclear fuel ( Ref 14 , 15 ) Electrochemical Cells The basic process of an electrochemical reaction requires an electrochemical cell comprised of two half cells...
Book Chapter

Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003685
EISBN: 978-1-62708-182-5
..., powder-metallurgy parts, fasteners, electrical black boxes, corrosion and SCC protection of depleted uranium and titanium alloys, and electromagnetic interference compatibility ( Ref 6 ). One of the first industrial applications of the IBAD process was the coating of stainless steel electric razor...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006448
EISBN: 978-1-62708-190-0
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001117
EISBN: 978-1-62708-162-7
... agent in the preparation of thorium, zirconium, uranium, chromium, vanadium, and the rare earths. It is also used as a deoxider, decarburizer, or desulfurizer for various ferrous and nonferrous alloys. Calcium is used as an alloying or modifying agent for aluminum, beryllium, copper, lead, tin...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001739
EISBN: 978-1-62708-178-8
..., as with machined alloy chips. If samples are sieved, the fraction reserved for analysis must represent the desired analytical sample. Sometimes certain analytes are concentrated in fines and depleted in coarse fractions. Each part of this procedure is important, because subsequent analytical work is based...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001771
EISBN: 978-1-62708-178-8
... when one electron of the indicated quantum numbers n , l , j is missing. Figure 2 shows such a diagram for uranium. Also shown are the x-ray and spectroscopic notations corresponding to the n , l , j quantum numbers. Fig. 2 Energy-level diagram of an atom. The energy of the atom...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001749
EISBN: 978-1-62708-178-8
... 82 (lead), all of which are radioactive. The naturally occurring thorium and uranium isotopes all decay by α-particle emission, producing daughters that are also radioactive and decay by α-particle emission or β-particle emission. This process continues until the decaying chain reaches an atomic...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... to a slow-growing aluminum oxide, usually alpha alumina. This is illustrated in Fig. 5 , a micrograph of a low-pressure plasma-sprayed NiCoCrAlY after several hours of service, showing both the protective alumina scale and the aluminum-depleted zone below it. Many of these coatings can be used as either...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001119
EISBN: 978-1-62708-162-7
...) minor toxic metals, including antimony, barium, indium, magnesium, silver, tellurium, thallium, tin, titanium, uranium, and vanadium. The main factors included in the discussion are their disposition, toxicity, biological factors and treatment. carcinogenicity chelating agents chelation therapy...