Skip Nav Destination
Close Modal
By
Caroline A. Murphy, Cesar R. Alcala-Orozco, Alessia Longoni, Tim B. F. Woodfield, Khoon S. Lim
Search Results for
dental appliances
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 48 Search Results for
dental appliances
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006901
EISBN: 978-1-62708-392-8
... or classic stereolithography apparatus (SLA), direct light processing, and liquid-crystal-display-masked SLA. The article covers two subgroups of 3D printing resins-based appliances, namely intraoral and extraoral appliances. Information on various types of dental appliances and the fabrication of in-office...
Abstract
This article provides an overview of the adoption of additively manufactured materials in dentistry. It discusses the practical workflows of a three-dimensional printing technology, vat photopolymerization. Three subgroups of the vat photopolymerization process are laser beam or classic stereolithography apparatus (SLA), direct light processing, and liquid-crystal-display-masked SLA. The article covers two subgroups of 3D printing resins-based appliances, namely intraoral and extraoral appliances. Information on various types of dental appliances and the fabrication of in-office appliances is provided. The article also reviews fourth-dimension printing and discusses the applications of the personalized care model in medicine and dentistry.
Image
in Additive Manufacturing of Cobalt-Chromium Alloy Biomedical Devices
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 1 Additive-manufactured biomedical devices for applications from arthroplasty to dental appliance. (a) As-printed directed-energy deposition hip stem. (b) Powder-bed fusion as-printed hip stem with support structures. (c) Hip stem with support structures removed. (d) Acetabular cup. (e
More
Image
Published: 12 September 2022
Fig. 6 A 3D-printed dental splint, also known as a nightguard. This appliance was designed using SprintRay Cloud Design software and was 3D printed using NightGuard Flex resin.
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Image
Published: 12 September 2022
Fig. 4 A 3D-printed surgical guide. This appliance helps in transferring the data on the position and angulation of a dental implant to the patient’s mouth. This appliance will be touching the patient’s tissues, hence the required Food and Drug Administration short-use clearance
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004209
EISBN: 978-1-62708-184-9
... Abstract This article describes dental alloy compositions and its properties. It discusses the safety and efficacy considerations of dental alloy devices. The article defines and compares interstitial fluid and oral fluid environments. Artificial solutions developed for the testing...
Abstract
This article describes dental alloy compositions and its properties. It discusses the safety and efficacy considerations of dental alloy devices. The article defines and compares interstitial fluid and oral fluid environments. Artificial solutions developed for the testing and evaluation of dental materials are summarized. The article examines the effects of restoration contact on electrochemical parameters and reviews the concentration cells developed by dental alloy-environment electrochemical reactions. The composition and characterization of biofilms, corrosion products, and other debris that deposit on dental material surfaces are discussed. The article evaluates the types of alloys available for dental applications, including direct filling alloys, crown and bridge alloys, partial denture alloys, porcelain fused to metal alloys, wrought wire alloys, soldering alloys, and implant alloys. The effects of composition and microstructure on the corrosion of each alloy group are also discussed. The article concludes with information on the tarnishing and corrosion behavior of these alloys.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... reconstruction of partially resected mandiblel; types 316 and 316L stainless steel Fixed orthodontic appliances Correction of malocclusion by movement of teeth: components include bands, brackets, archwires, and springs; types 302, 303, 304, and 305 stainless steel Preformed dental crowns Restoration...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005670
EISBN: 978-1-62708-198-6
..., advised binding teeth together using gold wire to reduce a jaw fracture ( Ref 22 , 27 ). Crude Greek appliances showing this practice have been found and dated to 300 to 400 B.C. ( Ref 22 , 27 ). Later, a Roman gold dental appliance, dated to 100 A.D., provides another early evidence of crown work ( Ref...
Abstract
This article focuses on the use of noble and precious metals for biomedical applications. These include gold, platinum, palladium, ruthenium, rhodium, iridium, and osmium. The physical and mechanical properties of noble and precious metals are presented in tables. A brief discussion on the ancient history of noble and precious metal use in dentistry is provided. The article discusses the use of direct gold dental filling materials, direct silver dental filling materials, traditional amalgam alloys, high-copper amalgam alloys, and gallium alloys in biomedical applications. It also provides information on gold coatings and iridium oxide coatings for stents.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
... Abstract This article reviews friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants...
Abstract
This article reviews friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants, dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal instruments, and orthodontic wires. The article describes the correlations of properties such as the hardness, fracture toughness, and wear. It provides information on wear mechanism such as the sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001087
EISBN: 978-1-62708-162-7
... to the application, are largely unknown except to the users. Many facets of daily life and influenced by precious metals and their alloys. For example, precious metals are used in dental restorations and dental fillings (see the section “Precious Metals in Dentistry” in this article). Precious metal solders...
Abstract
Precious metals are of inestimable value to modern civilization. This article discusses the resources and consumption, trade practices, and special properties of precious metals and its alloys, including ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold, and tabulates the industrial applications of precious metals. It provides information on the commercial forms (wire, rod, sheet, strip, ribbon, and foil) and uses of precious metals, including semifinished products, precious metal powders, industrial uses, coatings, and jewelry.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
... and medallions, and dental parts (crowns, copings), since these are used directly in and by the public sector. Lesser-known applications are found in medical hardware (fiduciary markers, electrodes, and embolization coils), electronics (connectors), electrical power applications (contacts, motor brushes...
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... increased osseointegration into the implant ( Ref 6 ). For dental implant applications, anodically oxidized surfaces with a surface roughness of 1.35 μm (53 μin.) have a statistically lower probability to fail compared to machined surfaces (±0.5 μm, or 20 μin.) ( Ref 7 ). Mechanical Properties...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006882
EISBN: 978-1-62708-392-8
... manufacturing design, and 3D printing, dental laboratories can now accurately and quickly produce crowns, bridges, and a range of orthodontic appliances such as aligners. Instead of the traditional impressions, a 3D scan is taken of the patient’s oral cavity that is transformed into a 3D model using CAD...
Abstract
Vat polymerization is a form of three-dimensional (3D) printing. Historically, it is the oldest additive manufacturing technique, with the development of stereolithography apparatus (SLA) by Charles Hull in 1986. This article outlines the various forms of vat polymerization techniques used for biomedical applications. Due to the complex nature of this printing process, many key print parameters and material properties need to be considered to ensure a successful print. These influential parameters are addressed throughout the article to inform the reader of the considerations that should be taken when using the vat polymerization technique. The article provides information on vat polymerization printer setup, the photo-cross-linking mechanism, and considerations using vat polymerization. In addition, it outlines and discusses the advancements of vat polymerization in the biomedical industry.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
... in the fabrication of biomedical-based devices and are discussed briefly. Fig. 1 Additive-manufactured biomedical devices for applications from arthroplasty to dental appliance. (a) As-printed directed-energy deposition hip stem. (b) Powder-bed fusion as-printed hip stem with support structures. (c) Hip stem...
Abstract
This article discusses some of the additive manufacturing (AM) based fabrication of alloys and their respective mechanical, electrochemical, and in vivo performance. Firstly, it briefly discusses the three AM techniques that are most commonly used in the fabrication of metallic biomedical-based devices: binder jetting, powder-bed fusion, and directed-energy deposition. The article then characterizes the electrochemical properties of additive-manufactured/processed cobalt-chromium alloys. This is followed by sections providing an evaluation of the biological response to CoCr alloys in terms of the material and 3D printing fabrication. Discussion on the biological response as a function of direct cellular activity on the surface of CoCr alloys in static conditions (in vitro), in dynamic physiological conditions (in vivo), and in computer-simulated conditions (in silico) are further discussed in detail. Finally, the article provides information on the qualification and certification of AM-processed medical devices.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003121
EISBN: 978-1-62708-199-3
..., electrically heated appliances and utensils, and automotive cylinder heads and radiators. Aluminum is nonferromagnetic, a property of importance in the electrical and electronics industries. It is nonpyrophoric, which is important in applications involving inflammable or explosive-materials handling...
Abstract
Aluminum and its alloys are used in a broad range of applications. This article discusses the primary and secondary production of aluminum and the classification system for cast and wrought products. It describes some of the more common manufactured forms, including commercial wrought aluminum products, aluminum alloy engineered castings, powder metallurgy parts, and metal-matrix composites. The article also reviews fabrication characteristics such as machining, forming, forging, and joining. It concludes with a description of the major industrial applications of wrought and cast aluminum alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006055
EISBN: 978-1-62708-175-7
... for tooling orthodontic dental components can be much higher than for larger parts, because creating extremely small details requires sophisticated machining and a great deal of skill. Many MIM manufacturers use a hot runner system, which helps prevent MIM feedstock from cooling too quickly and freezing...
Abstract
Metal injection molding (MIM) is a metalworking technology that has its origins as a commercial technology only dating back to the early 1970s. This article explores why the MIM is the preferred solution for many fabricated components. It illustrates the MIM components required for different end-use markets such as electronics and telecommunications, medical, automotive, power hand tools, industries, and firearms.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... in these dental applications led to the investigation in animal studies of the use of cast CoCrW screws in orthopaedics for fracture-fixation applications ( Ref 3 ). Following modification of carbon and chromium levels of the original dental alloy composition, cast cobalt-chromium screws and plates were...
Abstract
This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, and stacking faults and twins and their role in this transformation. It also discusses the strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005665
EISBN: 978-1-62708-198-6
..., it was suggested that an adaptive immune response to metallic implant debris (cobalt, chromium, nickel, aluminum, molybdenum, vanadium) occurs preferentially over a nonspecific immune response. Finally, titanium is also known to induce metal sensitivity in patients with dental implants, and, in one reported case...
Abstract
This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects of ion toxicity. These include ion concentration and accumulation in organisms, reactive oxygen species and oxidative stress, and carcinogenicity stimulated by the corrosion process and toxic ions release.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006969
EISBN: 978-1-62708-439-0
... of this in products ranging from dental appliances and customized prosthetics to unique eyewear, clothing, and jewelry. Vertical Integration Vertical integration describes a supply chain strategy in which all manufacturing operations are performed by a single company, possibly even in one facility. Additive...
Abstract
This article reviews business cases for additive manufacturing (AM) and offers suggestions on monetizing the flexibility created by AM through a deep understanding of the most applicable cost drivers. It also reviews the common adoption drivers for AM and provides suggestions on how to take advantage of them. The AM maturity model breaks down potential additively manufactured products into five levels: preproduction, production influence, substitution, functional designs, and multifunctional. The business value of these levels is further described and evaluated with respect to the triple constraint of project management. The article then focuses on success factors for implementing AM.
1