Skip Nav Destination
Close Modal
Search Results for
density function theory
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 180 Search Results for
density function theory
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005429
EISBN: 978-1-62708-196-2
... Abstract Electronic structure methods based on the density functional theory (DFT) are used as a powerful tool for assessing the mechanical thermodynamic and defect properties of metal alloys. This article presents the origins of the electronic structure methods and their strengths and...
Abstract
Electronic structure methods based on the density functional theory (DFT) are used as a powerful tool for assessing the mechanical thermodynamic and defect properties of metal alloys. This article presents the origins of the electronic structure methods and their strengths and limitations. It describes the basic procedures for calculating essential structural properties in metal alloys. The article reviews the approximations and computational details of the pseudopotential plane wave methods used in metal systems. It provides information on the applications of DFT methods in metal alloy systems. The article discusses the calculations of a variety of structural, thermodynamic, and defect properties, with particular emphasis on structural metal alloys and their derivatives.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005435
EISBN: 978-1-62708-196-2
... Abstract This article assesses the evolution of martensite modeling in the changing materials engineering environment. It describes the physics of displacive transformations using Ginzburg-Landau theory, microstructure representation, dynamics and simulations, density functional theory, and...
Abstract
This article assesses the evolution of martensite modeling in the changing materials engineering environment. It describes the physics of displacive transformations using Ginzburg-Landau theory, microstructure representation, dynamics and simulations, density functional theory, and shuffle transitions. The article reviews the application of the Ginzburg-Landau approach to rigorous solutions for issues in the structure of a martensitic nucleus based on the martensitic nucleation theory. The three basic behavior modes of martensitic growth, such as elastic, elastic/plastic, and fully plastic are discussed. The article also reviews the overall kinetics of martensitic transformations.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005410
EISBN: 978-1-62708-196-2
... different phases as well as the inhomogeneous strain created by the microstructure. One then calculates the nucleation free energy as a function of the local phase fields and the local strain. Finally, the expression of the nucleation rate given by the classical theory is used to seed the phase-field...
Abstract
This article describes the results obtained by Volmer, Weber, Farkas, Becker, and Doring, which constitute the classical nucleation theory. These results are the predictions of the precipitate size distribution, steady-state nucleation rate, and incubation time. The article reviews a nucleating system as a homogeneous phase using the classical nucleation theory, along with heterophase fluctuations that led to the formation of precipitates. It discusses the gas cluster dynamics using the kinetic approach to describe nucleation. The article presents key parameters, such as cluster condensation and evaporation rates, to describe the time evolution of the system. The predictions and extensions of the classical nucleation theory are discussed. The article also provides the limitations of classical nucleation theories in cluster dynamics.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
... Abstract This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal...
Abstract
This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also presents application examples and possible future developments in neutron diffraction.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... glass and measurement of these properties as a function of temperature. ceramics chemical analysis density measurement microstructural analysis nondestructive evaluation phase analysis proof testing strength testing methods surface area measurement thermophysical property testing...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005428
EISBN: 978-1-62708-196-2
... Glauber dynamics and kT s = 0.75. The second phase has an unchangeable index and so pins the primary phase. The simulations were performed using a square (1,2) lattice, Glauber dynamics, metropolis transition probability function, and kT s = 0.75. The theory of pinning and the ability of...
Abstract
The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith pinning, abnormal grain growth, and recrystallization. It introduces the basics of the model, providing details of the dynamics, simulation variables, boundary energy, boundary mobility, pinning systems, and stored energy. The article explains how to incorporate experimental parameters and how to validate the model by comparing the observed behavior quantitatively with theory. The industrial applications of the model are also discussed. The article also provides a wide selection of the algorithms for implementing the Potts model, such as boundary-site models, n -fold way models, and parallel models, which are needed to simulate large-scale industrial applications.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005412
EISBN: 978-1-62708-196-2
... of the crystals, the mechanism of interfacial reactions is a function of these parameters as well. Some examples of the application of the a forementioned theory of interface structure are presented to predict interface reaction mechanisms. Two cases of interfaces between two crystals—a...
Abstract
This article summarizes a physical model of an interface structure and shows how the model helps in optimizing atomistic modeling studies. It presents the orientation relationship of the interface structure to define the mutual crystallographic position of adjacent crystals. The article describes the model-informed atomistic modeling of the interface structures for interpolating the results of atomistic modeling to predict the properties of interfaces. Theories to predict low-energy orientation relationships are described. The article discusses the use of the localization parameter, such as shear modulus, bonding energy, and transformations, for prediction of interface structures. It provides information on the application of the atomistic modeling of interface structure to predict interface reaction mechanisms.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006647
EISBN: 978-1-62708-213-6
... Abstract This article provides a clear but nonexhaustive description of the general principle of atomic emission, with a particular focus on instrumentation, and summarizes the main characteristics of the inductively coupled plasma optical emission spectrometer technique. Basic atomic theory as...
Abstract
This article provides a clear but nonexhaustive description of the general principle of atomic emission, with a particular focus on instrumentation, and summarizes the main characteristics of the inductively coupled plasma optical emission spectrometer technique. Basic atomic theory as well as the instrument characteristics and their influence on the instrument performances are presented. The advantages, drawbacks, and developments of this technique are discussed, and, finally, alternative techniques and examples of applications are provided.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006643
EISBN: 978-1-62708-213-6
... Abstract This article describes the methods of X-ray diffraction analysis, the types of information that can be obtained, and its interpretation. The discussion covers the basic theories of X-rays and various types of diffraction experiments, namely single-crystal methods for polychromatic and...
Abstract
This article describes the methods of X-ray diffraction analysis, the types of information that can be obtained, and its interpretation. The discussion covers the basic theories of X-rays and various types of diffraction experiments, namely single-crystal methods for polychromatic and monochromatic beams, powder diffraction methods, and the Rietveld method.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... summarizes the theory of XRD analysis and describes advances in equipment capability. measurement depth selection measurement location selection measurement validation residual-stress analysis sample selection specimen preparation X-ray diffraction X-RAY DIFFRACTION (XRD) residual-stress...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003841
EISBN: 978-1-62708-183-2
... Abstract This article provides an overview of the corrosion theory relating to refractories on the basis of acid/base reactions, thermodynamics, and kinetic considerations. The tests to evaluate refractory corrosive wear are reviewed. The article describes the specific refractories used in...
Abstract
This article provides an overview of the corrosion theory relating to refractories on the basis of acid/base reactions, thermodynamics, and kinetic considerations. The tests to evaluate refractory corrosive wear are reviewed. The article describes the specific refractories used in steel, glass, aluminum, and chemical-resistant applications. Specific material issues that should be considered or evaluated when choosing or using refractory materials are discussed.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005924
EISBN: 978-1-62708-166-5
..., including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils...
Abstract
Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements, including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003047
EISBN: 978-1-62708-200-6
... Abstract This article begins with an overview of the fundamentals of adhesive technology, including functions, limitations, adhesive joint types, and the key factors in the selection of adhesives, including application, type of joint, process limitation, mechanical requirement, and service...
Abstract
This article begins with an overview of the fundamentals of adhesive technology, including functions, limitations, adhesive joint types, and the key factors in the selection of adhesives, including application, type of joint, process limitation, mechanical requirement, and service conditions. It then focuses on the characteristics, types, and properties of the five groups of adhesives, such as structural, hot melt, pressure sensitive, water based, ultraviolet, and electron beam cured adhesives. The article also discusses the functions and applications of adhesive modifiers, including fillers, adhesion promoters, tackifiers, and tougheners. It gives a short note on functions of primers and primerless bonding. Applications of adhesives in automotive, aerospace, electronics, electrical, medical, sports, and construction sectors are also described. Finally, the article describes the steps in adhesive bonding, including storage and handling of adhesives, bonding preparation, adhesive application, tooling, and curing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003088
EISBN: 978-1-62708-199-3
... Abstract This article describes design factors for products used in engineering applications. The article groups these factors into three categories: functional requirements, analysis of total life cycle, and other major factors. These categories intersect and overlap, constituting a major...
Abstract
This article describes design factors for products used in engineering applications. The article groups these factors into three categories: functional requirements, analysis of total life cycle, and other major factors. These categories intersect and overlap, constituting a major challenge in engineering design. Performance specifications, risk and hazard analysis, design process, design for manufacture and assembly, design for quality, reliability in design, and redesign are considered for functional requirements. Life-cycle analysis considers raw-material extraction from the earth and product manufacture, use, recycling (including design for recycling), and disposal. The other major factors considered include evaluation of the current state of the art for a given design, designing to codes and standards, and human factors/ergonomics.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005933
EISBN: 978-1-62708-166-5
... overall conductivity of the nanofluids. They also suggested that particles may be much closer due to Brownian motion and thus enhance coherent phonon heat flow among the particles ( Ref 43 ). The estimated mean free path and the transition speed of phonons in nanofluids through density functional theory...
Abstract
Nanofluids offer a completely different behavior of wetting kinetics and heat-removal characteristics, which are exploited in industrial heat treatment for quenching. This article provides information on the important thermophysical properties of nanofluids, namely, thermal conductivity, viscosity, specific heat, density, and surface tension. It reviews wetting and boiling heat-transfer characteristics of nanofluids as quenchants and highlights the importance of using nanofluids as effective quench media for the hardening process during heat treatment. The article describes the effect of nanoparticle addition on the microstructure, mechanical properties of components, wetting kinetics, and kinematics.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... 30 ) or set at some fraction of the maximum dislocation density. Alternatively, the nucleation rate can be characterized as a function of processing parameters, such as the Zener-Hollomon parameter, and strain and used as direct input to the CA simulation ( Ref 31 ). In each case, the nucleation...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005240
EISBN: 978-1-62708-187-0
..., gallium, antimony, germanium, silicon, cerium, and plutonium are the exceptions to the general rule, since these elements contract on melting. Density of solid alloys as a function of temperature can be calculated from thermal expansion data using the following relationship: (Eq 8) ρ T = ρ...
Abstract
There are several main sources of thermophysical property data that provide the most authoritative and comprehensive compilations of critically and systematically evaluated data that are presently available. This article provides thermophysical property data to assist in the materials properties selection for the simulation of casting processes. The measurements of thermophysical property are difficult due to high temperatures and the reactivity of some alloys. The article discusses strategies adopted to minimize the effects of high temperatures and the reactivity of alloys. It presents thermophysical properties for pure metals and some commercial alloys, and tabulates enthalpy of fusion and the solidus and liquidus temperatures for various alloys of commercial interest. The article also tabulates density, thermal conductivity, surface tension, and viscosity for some commercial alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests...
Abstract
The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human body fluids, very complex solutions containing electrolytes and nonelectrolytes, inorganic and organic constituents, and gases. The article describes the fundamentals of electrochemical corrosion testing and provides a brief discussion on various types of corrosion tests. It illustrates corrosion current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests, and ion-leaching tests are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003052
EISBN: 978-1-62708-200-6
... reactions, filtration and washing, and powder recovery techniques. It concludes with a discussion on characterization, centering on size distribution analysis, specific surface area, density, porosity chemical composition, phase, and surface composition. ceramic powders ceramic processing additives...
Abstract
This article explains how ceramic powders are made. It begins by briefly describing the raw materials used in structural clay products, whitewares, refractories, and advanced ceramics. It then examines various additives that promote uniformity at different stages of the process. After a description of the comminution process (wet and dry milling methods), it discusses batching and mixing operations and granulation methods. The article also deals with the effect of process variables and the steps involved in chemical synthesis, including preparation from solution and gas-phase reactions, filtration and washing, and powder recovery techniques. It concludes with a discussion on characterization, centering on size distribution analysis, specific surface area, density, porosity chemical composition, phase, and surface composition.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... such as filters and porous self-lubricating bearings where porosity itself is of functional importance, the highest economically feasible density is usually sought in order to obtain the highest possible strength properties. Broadly speaking, increasing density is synonymous with increasing cost of a P...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.