Skip Nav Destination
Close Modal
Search Results for
degradation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1338
Search Results for degradation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009084
EISBN: 978-1-62708-177-1
... Abstract Polymer composite materials are subject to degradation if not appropriately protected from the environment. This article describes the effects of heat and atomic oxygen and ultraviolet-light on composite material surfaces, with illustrations. atomic oxygen composite material...
Abstract
Polymer composite materials are subject to degradation if not appropriately protected from the environment. This article describes the effects of heat and atomic oxygen and ultraviolet-light on composite material surfaces, with illustrations.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
... Abstract Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue...
Abstract
Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue, cavitation and water drop impingement, and corrosion fatigue. It describes the factors affecting the severity of fretting corrosion. The article also illustrates the relationship between corrosion fatigue and stress-corrosion cracking.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006866
EISBN: 978-1-62708-395-9
... Abstract Microbial degradation in the environment is initiated by abiotic (nonliving physical or chemical) processes. Mechanical weathering and other mechanical processes are the main drivers of the initial degradation. This article presents an overview of weathering and biodegradation...
Abstract
Microbial degradation in the environment is initiated by abiotic (nonliving physical or chemical) processes. Mechanical weathering and other mechanical processes are the main drivers of the initial degradation. This article presents an overview of weathering and biodegradation. It summarizes the main synthetic polymers that are released and available for bacterial and fungal decomposition. The article also presents a detailed discussion on the enzymes that are involved in plastic degradation, and the measurement of polymer degradation.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
... Abstract Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy...
Abstract
Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological).
Image
Published: 01 January 2002
Fig. 2 High-temperature degradation of a gas turbine transition duct. (a) Carbide, carbonitride precipitates, and oxide pentration along grain boundary. (b) Creep cracking along grain-boundary precipitates (arrows) on IN-617 panel. Creep cavities along grain boundaries link up and lead
More
Image
Published: 01 January 2002
Fig. 11 Degradation of rupture for Udimet 500 due to hot corrosion at 705 °C (1300 °F)
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 25 Schematics of the degradation mechanisms of spalling, oxidation, and inward diffusion for coatings
More
Image
Published: 01 January 2002
Fig. 15 Scanning electron image showing isolated degradation of the grip material. 30×
More
Image
Published: 01 January 2002
Fig. 23 A comparison of the initial heating run results, suggesting degradation of the failed sleeve material
More
Image
Published: 30 September 2015
Fig. 8 Conceptual model for the degradation of an organic coating on steel in a neutral NaCl solution. (a) With a large-scale scribe or mechanically damaged area. (b) Without apparent defects but with moisture permeation. Source: Ref 19
More
Image
Published: 30 September 2015
Fig. 22 Discoloration, detachment and/or blistering, and general degradation of a paint film
More
Image
Published: 01 December 2004
Fig. 18 Degradation of an electronic circuit due to silver diffusion and whisker formation during storage for 3000 h at 270 °C (520 °F). (a) Secondary electron image showing a general view of the transistor with gold-coated silver pads and gold wires. 20×. (b) X-ray dot map (silver
More
Image
Published: 01 January 2006
Fig. 6 Carbides are fully spheroidized from thermal degradation near failure. Voids (dark sites) have formed along the grain boundaries that are perpendicular to the direction of applied stress. Original magnification 1050×
More
Image
in Corrosion of Containment Materials for Radioactive-Waste Isolation
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 1 General model for corrosion degradation of alloy 22
More
Image
Published: 01 January 2006
Fig. 8 Degradation in rupture life for various superalloys due to hot corrosion at 705 °C (1300 °F)
More
Image
Published: 01 January 2006
Fig. 7 Schematic presentation of porosity formation and structural degradation in silver exposed to hydrogen/air dual environment. Partial pressure of steam formed within the bulk metal remains very high at all exposure temperatures.
More
Image
Published: 01 January 2006
Fig. 14 Severe concrete degradation caused by rebar corrosion of piers of a NAVSTA bridge in Pearl Harbor, HI
More
Image
Published: 01 August 2013
Fig. 78 Schematic summary of general free-radical degradation mechanisms of thermal-oxidative degradation of petroleum oil quenchants. Source: Ref 197
More
Image
Published: 01 August 2013
Fig. 2 Generic overview of the common types of abradable coating degradation in turbomachinery under varying service conditions
More
Image
in Systematic Analysis of Induction Coil Failures and Prevention
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 24 Degradation and failure of a powder-based flux concentrator due to overheating. Source: Ref 17
More
1