Skip Nav Destination
Close Modal
By
J.H. Beynon, C.M. Sellars
By
K. Subramanian
By
David Arencón Osuna, Marcelo de Sousa Pais Antunes, Vera Cristina de Redondo Realinho, José Ignacio Velasco
By
Jeffery C. Gibeling
By
Kevin M. Kit, Paul J. Phillips
By
Rajiv Shivpuri
By
J.H. Miller, P.K. Liaw
By
S.L. Semiatin, M.G. Glavicic, S.V. Shevchenko, O.M. Ivasishin, Y.B. Chun ...
By
Brian S. Hayes, Luther M. Gammon
Search Results for
deformation energy methods
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1332
Search Results for deformation energy methods
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004013
EISBN: 978-1-62708-185-6
..., billet configurations, and metal flow modes of coextrusion. It presents the analytical studies of coextrusion: deformation energy methods, lower-bound (slab) analyses, upper-bound analyses, and finite-element analyses. These studies are used to identify the regime of material properties and process...
Abstract
Coextrusion is defined as the simultaneous extrusion of two or more metals to form an integral product that can be carried out using conventional extrusion or drawing equipment at a temperature appropriate to the metal system being formed. This article discusses the applications, billet configurations, and metal flow modes of coextrusion. It presents the analytical studies of coextrusion: deformation energy methods, lower-bound (slab) analyses, upper-bound analyses, and finite-element analyses. These studies are used to identify the regime of material properties and process variables for which sound extrusions can be obtained. The article concludes with a discussion on the state-of-the-art of coextrusion that assists in developing process models, which accurately describe both the macroscopic and microscopic aspects of a process.
Book Chapter
Acoustic Emission Inspection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003237
EISBN: 978-1-62708-199-3
...-frequency stress waves generated by the rapid release of strain energy that occurs within a material during crack growth, plastic deformation, phase transformation, etc. This energy may originate from stored elastic energy as in crack propagation, or from stored chemical-free energy as in phase...
Abstract
Acoustic-emission inspection detects and analyzes minute acoustic-emission signals generated by discontinuities in materials under applied stress. This article discusses the types of acoustic emissions (continuous-type emissions and burst-type emissions) and applications, including laboratory testing, production testing, and structural testing. The article includes a section in which the characteristics of acoustic emission inspection are compared with other nondestructive testing methods. Further, it briefly reviews the key elements of the acoustic-emission instrumentation, which includes the acoustic-emission resonant sensor.
Book Chapter
Models for Predicting Microstructural Evolution
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... with a Monte Carlo method ( Ref 27 ). For each finite element, an estimate was made of the stored energy resulting from its deformation. Together with the misorientation of that element with its neighbors, a potential for nucleation of recrystallization can be determined. This is then used to commence a Monte...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Book Chapter
Influence of Work Material Properties on Finishing Methods
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001241
EISBN: 978-1-62708-170-2
... or controlling crack propagation. Stiffness Stiffness is the resistance to deformation. It is often measured as the elastic modulus, or the slope of the stress-strain curve. Because most finishing methods require application of force for surface generation, it is desirable to have minimum deflection...
Abstract
This article focuses on the influence of various work material properties, namely, hardness; toughness; stiffness; ductility; thermal, electrical, and magnetic properties; and microstructure effects on finishing methods. It also addresses the relative response of work materials, such as metals, ceramics, and composites, to grinding.
Book Chapter
Fracture Mechanics Testing of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... at the crack tip and elastic behavior throughout the remainder of the specimen, whereas in the actual materials, viscoelastic deformation of some form or another occurs in the bulk of the specimen. The presence of inelasticity in the entire specimen as well as at the crack tip results in additional energy...
Abstract
There are many different types of polymeric materials, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture (elastomers) to almost pure linear elastic (Hookian behavior) with low strains to fracture (glassy polymers). This article provides an overview of historical development of fracture behavior in polymers. It discusses the processes involved in three fracture test methods for polymers, namely linear elastic fracture mechanics, elastic-plastic fracture mechanics, and post-yield fracture mechanics.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001367
EISBN: 978-1-62708-173-3
... as an alternative method for supplying the electrical current for upset welding. deformation electrical current homopolar generator resistance welding single-pulse mode upset welding UPSET WELDING (UW) is a resistance welding process utilizing both heat and deformation to form a weld. The heat...
Abstract
Upset welding (UW) is a resistance welding process utilizing both heat and deformation to form a weld. A wide variety of shapes and materials can be joined using upset welding in either a single-pulse or continuous mode. This article discusses the advantages and disadvantages of upset welding, as well as the types of welds. The advantages include speed, ease of control, fewer defects, enhanced weld properties, simplicity of equipment, less-strict composition requirements, and ability to join difficult-to-weld materials. The article reviews the role of a homopolar generator as an alternative method for supplying the electrical current for upset welding.
Book
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.9781627081962
EISBN: 978-1-62708-196-2
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005592
EISBN: 978-1-62708-174-0
.... applied plastic strain method conductive heat transfer distortion fusion welding heat-input models irreversible plastic deformation multipass welding residual stress solid-phase transformations thermal cycle thermal transport models thermoelastoplasticity thermomechanical effects...
Abstract
Fusion welding induces residual stresses and distortion, which may result in loss of dimensional control, costly rework, and production delays. In thermal analysis, conductive heat transfer is considered through the use of thermal transport, heat-input, and material models that provide values for the applied welding heat input. This article describes how the solid-phase transformations that occur during the thermal cycle produced by welding lead to irreversible plastic deformation known as transformation plasticity. Residual stress and welding distortion are also discussed.
Book Chapter
Creep Deformation of Metals, Polymers, Ceramics, and Composites
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003287
EISBN: 978-1-62708-176-4
... occurs in a reasonable time. Constant load testing is normally employed for engineering purposes, because this situation most accurately represents service loading conditions. In contrast, constant true stress testing is used to study deformation mechanisms. At small strains, the two methods give...
Abstract
Creep deformation is normally studied by applying either a constant load or a constant true stress to a material at a sufficiently high homologous temperature so that a measurable amount of creep strain occurs in a reasonable time. This article provides the phenomenological descriptions of creep and explains the testing and mechanism of creep in crystalline solids. It also presents information on the creep response of crystalline and amorphous solids.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005127
EISBN: 978-1-62708-186-3
... that the workpiece is given kinetic energy early in the process and where forming is largely inertial because kinetic energy is dissipated as plastic deformation. For each of the forming methods, the physics is quite different in determining what the as-launched velocity profile of the workpiece will be. Finally...
Abstract
This article emphasizes the traits that are common to high-velocity forming operations. It describes general principles on how metal forming is accomplished and analyzed when inertial forces are large. The article discusses the principal methods of high-velocity forming, such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology.
Book Chapter
Fracture Resistance Testing of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003310
EISBN: 978-1-62708-176-4
... behavior throughout the remainder of the specimen, whereas in the real materials, there is viscoelastic deformation of some form or other occurring in the bulk of the specimen. The presence of inelasticity in the entire specimen, as well as at the crack tip, results in additional energy being required...
Abstract
This article discusses the J-integral-based single and multiple specimen techniques of the ASTM E 1737 test method for determining plane strain fracture toughness of polymeric materials. It describes the fracture toughness testing of thin sheets and films. The article concludes with information on the alternative methods for determining the fracture toughness of polymer materials.
Book Chapter
Abbreviations and Symbols: Sheet Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005169
EISBN: 978-1-62708-186-3
... methods of thermal expansion; ow SFE scanning electron microscopy W SFEM stacking fault energy W displacement in the x, y, and z localization parameter sfm simpli ed nite-element method Wf directions; width; weight or mass SI surface feet per minute W_ i aF draft angle of forging SLF Systeme...
Book Chapter
Modeling of Deformation Processes—Slab and Upper Bound Methods
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005456
EISBN: 978-1-62708-196-2
...), and the finite-element method (FEM). The slab method and upper bound method of analysis assume a known deformation field in the plastically deforming body and assume this field either satisfies the force equilibrium (SM) or power-conservation equations (UBM) to determine the stress field or the external load...
Abstract
This article focuses on approximate closed-form analytical methods, such as slab and upper bound methods, used for forward and inverse design of metal forming problems. Selected examples of application of these methods to metal forming processes are also discussed.
Book Chapter
Fracture Toughness of Ceramics and Ceramic Matrix Composites
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003311
EISBN: 978-1-62708-176-4
... the appropriateness of metal-based EPFM methods for use with CMCs. Metals dissipate crack-tip energy by the plastic deformation mechanisms of slip, dislocation generation, and dislocation movement. CMCs, on the other hand, dissipate crack tip energy through crack branching, fiber bridging, and microcracking...
Abstract
This article introduces the concepts of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM). It reviews the fracture mechanics of ceramics and ceramic matrix composites (CMCs). The article describes some fracture toughness measurement techniques used on ceramics and CMCs: single edge notch bending, compact tension, double cantilever beam testing, chevron notch methods, and double torsion. It presents descriptions organized by their specimen types, and includes the advantages and disadvantages, as well as the experimental control schemes employed for each specimen type.
Book Chapter
Fracture Toughness and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
... , which shows a sample specimen before and after (hidden lines) deformation ( Ref 10 ). Note that the CMOD is evaluated at the load line (centerline of the loading) and the CTOD is evaluated at the crack tip. Some test methods used for evaluating the CTOD are British Standard 7448, Part 1 and ASTM E 1290...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
Book Chapter
Deformation and Viscoelasticity of Polymers
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... Abstract This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers...
Abstract
This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers, and the effect of viscoelasticity on the test methods used. Two common ways of evaluating viscoelasticity of plastics are by means of creep experiments and dynamic mechanical experiments. Graphic or tabular analysis of test data, time-temperature superposition, and empirical correlation methods are commonly employed for analytical prediction of deformation characteristics of polymers.
Book Chapter
Modeling and Simulation of Texture Evolution during the Thermomechanical Processing of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... ) simulated texture-controlled grain h during beta annealing of Ti-6Al-4V using the phase-field method. The effect of grain-boundary energy/mobility and specific type of initial texture on grain-growth kinetics and the evolution of the different texture components were evaluated. Recrystallization of Beta...
Abstract
The modeling and simulation of texture evolution for titanium alloys is often tightly coupled to microstructure evolution. This article focuses on a number of problems for titanium alloys in which such coupling is critical in the development of quantitative models. It discusses the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase (alpha/beta) titanium alloys are also discussed.
Book Chapter
Impact Response of Composites
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
... impact of the composite. Analysis Methods for Impact-Damaged Composites Upon impact, if the energy is not absorbed by the composite as elastic strain energy, then damage will occur in the composite ( Ref 7 ). Common damage observed in fiber-reinforced composites involves crack formation...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... processes, while the latter are known as nonfusion welding processes. Once a decision is made that it is acceptable and advantageous to use fusion or not, it is important and beneficial to consider the type of energy source to be used to cause such melting or such plastic deformation, respectively...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... softening processes may occur, depending on the level of deformation during hot working. These are summarized in Fig. 3 for pure nickel ( Ref 8 ). For prestrains much less than those required to initiate DDRX, sufficient stored energy to nucleate static recrystallization is not available, and only static...
Abstract
This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot working and key processes that control microstructure evolution: dynamic recovery, static recovery, recrystallization, and grain growth. Some of the key phenomenological descriptions of plastic flow and microstructure evolution are also summarized. The article concludes with a discussion on the modeling of microstructure evolution.
1