Skip Nav Destination
Close Modal
Search Results for
defects
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2069 Search Results for
defects
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005344
EISBN: 978-1-62708-187-0
... Abstract The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article...
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories. It also discusses select case studies relevant to inclusions, cavities (gas porosity, shrinkage), and discontinuities (hot tearing, cold shut).
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
... Abstract The formation of defects within additive-manufactured (AM) components is a major concern for critical structural and cyclic load applications. Thus, understanding the mechanisms of defect formation in fusion-based processes is important for prescribing the appropriate process...
Abstract
The formation of defects within additive-manufactured (AM) components is a major concern for critical structural and cyclic load applications. Thus, understanding the mechanisms of defect formation in fusion-based processes is important for prescribing the appropriate process parameters specific to the alloy system and selected processing technique. This article discusses the formation of defects within metal additive manufacturing, namely fusion-based processes and solid-state/sintering processes. Defects observed in fusion-based processes include lack of fusion, keyhole collapse, gas porosity, solidification cracking, solid-state cracking, and surface-connected porosity. The types of defects in solid-state/sintering processes are sintering porosity and improper binder burnout. The article also discusses defect-mitigation strategies, such as postprocess machining, surface treatment, and postprocessing HIP to eliminate defects detrimental to properties from the as-built condition. The use of noncontact thermal, optical, and ultrasound techniques for inspecting AM components are also considered. The final section summarizes the knowledge gap in our understanding of the defects observed within AM components.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006972
EISBN: 978-1-62708-439-0
... Abstract This article presents a general understanding of causes and possible solutions for defects in the most common metal additive manufacturing (AM) processes: laser powder-bed fusion (L-PBF), laser directed-energy deposition (DED-L), and binder jetting (BJ). additive manufacturing...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006985
EISBN: 978-1-62708-439-0
... of the common defects that occur in laser powder bed fusion (L-PBF) components, mitigation strategies, and their impact on fatigue failure. It summarizes the fatigue properties of three commonly studied structural alloys, namely aluminum alloy, titanium alloy, and nickel-base superalloy. additively...
Abstract
Fatigue failure is a critical performance metric for additively manufactured (AM) metal parts, especially those intended for safety-critical structural applications (i.e., applications where part failure causes system failure and injury to users). This article discusses some of the common defects that occur in laser powder bed fusion (L-PBF) components, mitigation strategies, and their impact on fatigue failure. It summarizes the fatigue properties of three commonly studied structural alloys, namely aluminum alloy, titanium alloy, and nickel-base superalloy.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006008
EISBN: 978-1-62708-172-6
... Abstract Coatings, such as those applied to ships, must be resistant to abrasion, in the case of cargo hold coatings, and cyclic changes of chemicals and tank cleaning, in the case of tank linings. Failures and defects can manifest themselves at various times in the life of a coating...
Abstract
Coatings, such as those applied to ships, must be resistant to abrasion, in the case of cargo hold coatings, and cyclic changes of chemicals and tank cleaning, in the case of tank linings. Failures and defects can manifest themselves at various times in the life of a coating. To determine the cause and mechanism of coating failure, all possible contributory factors must be evaluated together with a detailed history from the time of application to the time the failure was first noted. Many coating failures require further evaluation and analysis to be carried out by a qualified chemist or coating specialist, often using specialized laboratory equipment. The article presents examples of coating failures and defects, together with descriptions, probable causes, and suggested preventative measures.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005871
EISBN: 978-1-62708-167-2
... Abstract Induction hardening involves multiple processing steps of heating and quenching which presents opportunity for errors and defects. This article discusses the common problems associated with induction hardening of shafts as well as the methods to diagnose, inspect, and prevent them...
Abstract
Induction hardening involves multiple processing steps of heating and quenching which presents opportunity for errors and defects. This article discusses the common problems associated with induction hardening of shafts as well as the methods to diagnose, inspect, and prevent them. In addition to the major defects such as laps and seams that remain after induction hardening, microstructural transformation, decarburization, residual stress, and grain size, as well as variations in carbon content, composition, or microstructure can also affect the hardened part.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005518
EISBN: 978-1-62708-197-9
... on the simulation of defects related to grain textures and microstructures. The article provides information on the application of the most important simulation approaches and the status of numerical simulation. defects grain textures microstructure numerical simulation solidification IN MOST...
Abstract
This article reviews the various aspects of the simulation of solidification microstructures and grain textures. It describes the grain structures and morphology of dendrites or eutectics that compose the internal structure of the grains. A particular emphasis has been put on the simulation of defects related to grain textures and microstructures. The article provides information on the application of the most important simulation approaches and the status of numerical simulation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall...
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006338
EISBN: 978-1-62708-179-5
... Abstract The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article...
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories in a table. It discusses common defects determined during the examination of samples of ductile cast iron in Elkem's research facility in Norway. The article reviews common defects, such as shrinkage cavities, blowholes, hydrogen pinholes, nitrogen defects, and abnormal graphite morphology, found in gray iron. It concludes with a discussion on surface defects in compacted graphite iron.
Image
in Metallography and Microstructures of Magnesium and Its Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 1 Casting defects in a Mg-Al-Ca-Sr alloy die cast computer housing. Defects are associated with filling the die cavity. (a) Misruns in decorative ribbing. (b) Swirl-like cold shuts. (c) Surface stains. Courtesy of B.R. Powell, General Motors Corporation
More
Image
in Metallography and Microstructures of Magnesium and Its Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 2 Casting defects in a Mg-Al-Ca-Sr alloy die cast computer housing. Defects are associated with solidification. (a) Hot cracking (tearing). (b) Sink associated with solidification shrinkage. Courtesy of B.R. Powell, General Motors Corporation
More
Image
in Metallography and Microstructures of Magnesium and Its Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 3 Casting defects in a Mg-Al-Ca-Sr alloy die cast computer housing. Defects are associated with ejection. (a) Cold or hot cracking (tearing) through the outside of the casting opposite the ejector pin. (b) Cracking on the same side as the ejector pin. (c) Drag or scoring along vertical
More
Image
Published: 01 January 1986
Fig. 17 Typical defects observable using optical microscopy. (a) Shrinkage porosity in an aluminum alloy 5052 ingot. Note angularity. 50×. (b) Coarse primary CrAl 7 crystal in aluminum alloy 7075 ingot. 100×. (c) Oxide stringer inclusion in a rolled aluminum alloy 1100 sheet. 250×. All
More
Image
Published: 01 January 1986
Fig. 10 Point defects observed using FIM. (a) Vacancies in iridium. Courtesy of J.A. Hudson, UKAEA Harwell Laboratory. (b) Self-interstitial atoms in tungsten. Source: Ref 4
More
Image
Published: 01 January 2002
Fig. 29 Examples of strength-limiting defects in ceramics. (a) Silicon inclusion in reaction-bonded silicon nitride. (b) Powder agglomerate in sintered silicon carbide. (c) Machining damage in hot pressed silicon nitride. SEM; picture widths (a) ∼150 μm. (b) ∼300 μm, (c) ∼150 μm. Source: Ref
More
Image
Published: 01 January 2002
Fig. 1 Typical crack defects found on ceramic ball surfaces under ultraviolet light. (a) Star defect. (b) Pressing defect. (c) Single ring crack. (d) Double ring cracks
More
Image
Published: 01 January 2002
Fig. 2 Example of fault tree chart for forgings with dye-penetrant defects
More
Image
Published: 01 January 2002
Fig. 5 Example of corrective action tree for forgings with dye-penetrant defects. LIMCA, liquid metal cleanness analyzer device
More
Image
Published: 01 January 2002
Fig. 16 Close-up views of surface casting defects on a paper-drier head. (a) At the 12 o'clock position. (b) At the 9 o'clock position, with arrow indicating a surface defect. (c) At the 6 o'clock position. All approximately 0.2×
More
Image
Published: 01 January 2002
Fig. 2 Schematic of defects and discontinuities in welded joints
More
1