Skip Nav Destination
Close Modal
Search Results for
defect tolerance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 866
Search Results for defect tolerance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2003
Fig. 2 Stress-corrosion cracking (SCC) defect tolerance parameter (K ISCC /σ y ), where K ISCC is the threshold SCC intensity factor and σ y is yield stress versus hardness for carbon steel weldments in three environments. Data are derived from published tests on precracked specimens
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys. defect tolerance mechanical properties particle size powder blending powder metallurgy powder size distribution spherical...
Abstract
Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
... are separations between laminate plies and can occur in any composite structure. The most common causes of this defect are poor process control, poor dimensional tolerance, faulty hole-drilling procedures, and inclusion of release film during fabrication. A majority of delaminations occur because the laminate...
Abstract
Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes the considerations for maintainability of the composite structures during the conceptual design phase. Sources of the defects and damage, such as manufacturing defects and in-service defects, are reviewed. The article describes the nondestructive inspection methods that are used in the repair of composite structures to locate damage, characterize the extent of damage, and ensure post-repair quality. It lists suggestions that can be used as design guidelines for adhesive bonding, general composite structure, sandwich structure, material selection, and lightning-strike protection. The article also provides the basic considerations for personnel, facilities, and equipment during maintenance.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... Abstract This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive...
Abstract
This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods, to predict the residual strength of the structures.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
... failure is a consequence of both crack nucleation and subsequent crack growth to failure. The defect-tolerant approach bases the fatigue life of a component on the number of loading cycles needed to propagate a crack of a predetermined initial size to a critical dimension at which fracture ensues. Both...
Abstract
This article reviews generalized test methodologies for fatigue characterization of polymers and examines fatigue fracture mechanisms in different engineering plastics. It provides detailed micromechanistic images of crack-tip processes for a variety of semicrystalline and amorphous engineering polymers. The article describes fracture mechanics solutions and approaches to the fatigue characterization of engineering polymers when dealing with macroscale fatigue crack growth. It includes mechanistic images for high-density polyethylene, ultrahigh-molecular-weight polyethylene, nylon 6, 6, polycarbonate, and polypropylene. The article describes the micromechanisms of toughening of plastics and uses a macroscale approach of applying fracture mechanics to the fatigue life prediction of engineering polymers, building on the mechanistic concepts. It also describes the factors affecting fatigue performance of polymers.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006508
EISBN: 978-1-62708-207-5
... cycle from mold filling to fusion, cooling, and part ejection. The article also provides information on casting quality, discussing dimensional tolerances, fold defects, and porosity. expendable pattern casting fold defects lost foam casting porosity sand casting Introduction Lost foam...
Abstract
Lost foam casting is a sand casting process in which the mold consists of an evaporative polystyrene foam pattern embedded in sand. It is especially well suited for making complex parts with convoluted features such as engine blocks, transmission cases, and cylinder heads. This article describes the lost foam casting process and its primary advantages, including the elimination of flash and parting lines, the relative ease of prototyping with foam, and the ability to incorporate multiple metals, whether in sections or layers, through sequential pours. It illustrates an entire process cycle from mold filling to fusion, cooling, and part ejection. The article also provides information on casting quality, discussing dimensional tolerances, fold defects, and porosity.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001407
EISBN: 978-1-62708-173-3
... engineering applications and service conditions. The article discusses the microstructural evolution of the weld metal and the heat-affected zone, susceptibility to defect formation during welding, mechanical and corrosion properties, and weld process tolerance. austenitic stainless steel corrosion...
Abstract
Stainless steels are an important class of engineering alloys used in both wrought and cast form for a wide range of applications and in many environments. This article aids in the selection of stainless steels based on weldability and service integrity. Stainless steels are classified by microstructure and are described as ferritic, martensitic, austenitic, or duplex. The article illustrates compositional ranges of the ferritic, martensitic, austenitic, and duplex alloys in the Schaeffler diagram. It describes the metallurgical aspects of welded stainless steels to be considered for particular engineering applications and service conditions. The article discusses the microstructural evolution of the weld metal and the heat-affected zone, susceptibility to defect formation during welding, mechanical and corrosion properties, and weld process tolerance.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006462
EISBN: 978-1-62708-190-0
... the defect. Figure 6 conceptually illustrates the interplay of NDE and fracture mechanics in the damage tolerant approach. It is common for service to increase the extent of damage over time. For the case of fatigue, the measure of damage is crack size. However, analogous concepts could apply to high...
Abstract
Both nondestructive testing (NDT) and nondestructive evaluation (NDE) use noninvasive measurement techniques to gain information about defects and various properties of materials, components, and structures. This article begins with a discussion on the historical development of quantitative measurement techniques, evaluation reliability, and quantitative interpretation of nondestructive inspection methods. The common nondestructive evaluation methods, along with their uses and limitations, are summarized in a table. The article conceptually illustrates the interplay of NDE and fracture mechanics in the damage tolerant approach. It concludes with information on pressure vessel applications that can be separated into three protocols used by military nuclear power, commercial nuclear power, and non-nuclear pressure vessels and/or fired boilers.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002381
EISBN: 978-1-62708-193-1
... in which a crack grows to the permissible size. Damage tolerance analysis is used to obtain this information. Damage tolerance is the property of a structure to sustain defects or cracks safely, until such time that action is (or can be) taken to eliminate the cracks by repair or by replacing...
Abstract
Fracture control is a systematic process to prevent fracture during operation that depends on the criticality of the component, the economic consequences of the structures being out of service, and the damage that would be caused by a fracture failure. This article describes the key principles of fracture control and reviews the concepts of damage tolerance analysis. It further presents practical guidelines to obtain useful and reasonable answers from damage tolerance analysis. The article concludes with information on fracture mechanics and fatigue design.
Image
Published: 01 December 2008
Fig. 14 The flat surfaces of this investment casting as originally designed (a) created problems of thickness tolerance and surface defects from cracking of the mold precoat. A redesign (b) eliminated the flat surfaces and the attendant defects.
More
Image
Published: 01 January 2002
Fig. 7 Damage tolerance approach to life management of cyclic-limited engine components. The safety limit or residual life is the time for the initial flaw to grow and cause failure. The size of the initial flaw, a i , is based on the inspection method or material defect distribution
More
Image
Published: 01 August 2018
Fig. 9 Damage tolerance approach to life management of operational cycle limited jet engine components. The safety limit or residual life is the time for an initial flaw to grow and cause failure. The size of the initial flaw, a i , is based on the inspection method or material defect
More
Image
Published: 01 January 2005
Fig. 25 Close-tolerance, no-draft aluminum latch support forging that required minimum machining. See Example 2 . Dimensions in figure given in inches Item No-draft forging Material Aluminum alloy 7075 (QQ-A-367) (a) Heat treatment (temper) T6 (a) Mechanical properties
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... length. When a crack is found by NDE, the structure is repaired or modified to eliminate the defect. For the case of fatigue, the damage tolerant approach, which had found a wide range of applications ( Ref 13 , 14 , 15 , 16 , 17 ), is based on the physical understanding of damage evolution...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002348
EISBN: 978-1-62708-193-1
...” the probable “defects” when the specimen locations are selected for fatigue tests. This often has proved to be an unreliable approach and has led, at least in part, to the damage-tolerant approach. Another possible difficulty with these assumptions is that inspectability and detectability are not inherent...
Abstract
This article provides ASTM standard definitions for fatigue and describes the approaches that are used to design finite or infinite life, used in a complementary sense in fatigue design. It explains four distinct phases of fatigue: nucleation, structurally dependent crack propagation, crack propagation, and final instability. The article discusses the significant role that fatigue plays in industrial design applications.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003318
EISBN: 978-1-62708-176-4
..., the defect tolerant approach bases the fatigue life of a component on the number of loading cycles needed to propagate a crack of an initial size to a critical dimension. Over the last few decades, numerous researchers have provided detailed reviews ( Ref 1 , 2 , 3 , 4 , 5 , 6 , 7 , and 8 ) of fatigue...
Abstract
This article provides a review of fatigue test methodologies and an overview of general fatigue behavior, fatigue crack initiation and fatigue crack propagation of advanced engineering plastics. It also describes the factors affecting fatigue performance of polymers and concludes with information on fractography, a useful tool in failure analysis.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
... operation. Safe operation must be possible until the defect is detected by routine scheduled maintenance or, if undetected, for the design life. The level of this damage tolerance and the initial flaw size for metals or required impact threat for composites is much greater than that required to meet...
Abstract
This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. It presents a brief introduction on the durability impact threat, damage tolerance impact threat, and other damage tolerance damage threats. The article summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms of the mechanics based model, the regression algorithm, and the semi-empirical analysis.
Image
Published: 01 January 1993
Fig. 2 Tolerance to variation in welding current and plasma gas flow rate in pulsed and continuous current keyhole welding; boundaries show the welding parameter combinations at which specific defects are likely to occur. Welding parameters; nozzle bore, 2.36 mm (0.0929 in.); electrode
More
Image
Published: 31 October 2011
Fig. 2 Tolerance to variation in welding current and plasma gas flow rate in pulsed- and continuous-current keyhole welding; boundaries show the welding parameter combinations at which specific defects are likely to occur. Welding parameters: nozzle bore, 2.36 mm (0.0929 in.); electrode
More
1